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A B S T R A C T   

The fast-growing demand for effective Industry 4.0-ready systems from academics and practitioners has required 
an assessment of the state-of-the-art research and implementations in Manufacturing Execution Systems (MES). 
This paper primarily carries out a systematic literature review of the pertinent fields to identify the promising 
research topics with high potentials for further investigations. In this paper, we adopt a bibliometric and network 
analysis to create insights that have not been captured before in this domain. It identifies the key institutions, 
authors and countries that have the highest impact on today’s MES solutions. The trending and pioneering 
technologies, having high potential to be used in the new generation of MESs, are highlighted for further ex
aminations. We subsequently reviewed the recent surveys related to these technologies and outlined the research 
limitations, gaps and opportunities that are discussed in the reviewed literature. Inspired by Industry 4.0 
maturity steps, five intelligence levels are defined to examine the Industry 4.0 compatibility of the MES models. 
Besides, this paper briefly reviews the well-known MES solutions and examines their functionalities and intel
ligence levels. The paper additionally discusses the gaps between the degree of progress in academic and in
dustrial MES solutions and the challenges that impede the adoption of novel MESs by practitioners. Lastly, we 
propose a conceptual framework, called Intelligent MES (IMES), to illustrate what an industry 4.0-ready MES 
should contain.   

1. Introduction 

The concept of Manufacturing Execution System (MES) emerged in 
mid-1990s to address the Enterprise Resource Planning (ERP) layer’s 
insufficiency in real-time management of operations on the shop floor 
[1]. ERP includes modules for production planning, inventory control, 
demand forecasting, cost accounting, and marketing for manufacturing 
enterprises [2]. Since ERP collects and integrates the information 
required for implementing these modules from the shop floor and other 
organizational functions on a daily, weekly, or monthly basis, it lacks the 
speed and level of detail that is vital to respond immediately to every 
single transaction occurring on the shop floor [3]. 

To solve this issue, the MES concept was developed to make a 
connection between the shop floor and ERP layer. From a top-down view 
of the management hierarchy, MES creates a detailed operational plan 

by combining preliminary production plans from the ERP with real-time 
information on processes, materials, and operations from the machines, 
controls, and individuals on the shop floor. This plan enables real-time 
management of production activities on the shop floor from order 
receipt to finished products. From a bottom-up view, MES provides ERP 
with abstract information on the shop floor execution. For instance, it 
updates ERP on the completion status of an order, which can affect the 
release of upcoming planned orders [4]. 

In the automation pyramid (Fig. 1), an MES system is the main 
production management tool that provides a bidirectional link between 
the enterprise planning layer and the shop floor control/automation 
layer [5]. From a bottom-top view, the MES receives data on the status of 
the shop floor through actuators and sensors residing in the supervisory 
control and data acquisition (SCADA) system such as distributed control 
systems (DCSs), programmable logical controllers (PLCs), and other 
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smart devices. The information is then abstracted to the level required 
by the ERP system for decision-making [6]. The abstraction is required 
because the data generated by the SCADA system contains highly 
granular information with a limited scope (e.g., a specific resource), 
while the ERP system at the enterprise planning layer requires abstract 
information for decision making [4]. The ERP system uses abstracted 
information such as statuses of orders being processed to make a deci
sion on the release of upcoming planned orders [7]. In a top-down view 
of the management hierarchy, the ERP system provides data on the 
planned orders including product mixes, sizes, and due dates for the 
MES. Thereafter, the MES translates the production goals (planned or
ders) into a detailed schedule for execution at the shop floor [7]. The 
MES operates on a daily to real-time basis in order to translate monthly 
to daily decisions made at the enterprise planning layer into real-time 
schedules needed to maintain shop floor control [4]. 

The main functionalities of the MES are data acquisition and 
abstraction, detailed scheduling of operations, resource allocation and 
control, dispatching production to machines and workers, controlling 
product quality, and managing the maintenance of equipment and tools 
[8]. The implementation of MES in manufacturing enterprises improves 
the critical key performance indicators (KPIs) of the company including 
reduced lead time and cost, improved quality, production transparency, 
and increased efficiency [1]. In addition, MES can provide online in
formation on the raw material inventory, machine breakdowns, and 
delays at the shop floor of each manufacturer across the supply chain. 
Thus, it also helps the Supply Chain Management (SCM) layer, which 
interacts with the ERP layer, to better respond to disturbances and 
disruptive events [4]. Industry 4.0 is defined as bringing intelligence, 
flexibility, operational efficiency, and fully predictive production to 
manufacturing enterprises [9]. The first step toward achieving this goal, 
as shown in Fig. 2, is to collect and integrate data from the MES as well 
as other information systems, the internet, and manufacturing resources 
[10]. The collected data can then be analyzed and used to bring intel
ligence to the product design, planning, and production stages, as well as 
equipment maintenance. In particular, MES can be realized as one of the 
key enablers of the fourth industrial revolution in manufacturing en
terprises due to two important reasons. First and foremost, the funda
mental features of MES serve as the foundation for implementing 
Industry 4.0 concepts. Second, using Cyber-Physical Systems (CPS) and 
Cyber-Physical Production Systems (CPPS), MES can enable business 
processes in ERP and tiers across the supply chain to become smarter by 
supplying online data from smart products and machines on the shop 
floor [11,12]. In Industry 4.0 context, the main roles of MES are as 
follows [5]:  

1. Lie in the center of smart supply chains and coordinate the horizontal 
integration of all facilities and trading partners;  

2. Help to further integrate the vertical business processes within the 
ERP including logistics, engineering, sales, compliance, quality, 
maintenance, and operations; 

3. Schedule tasks in the production line according to the real-time ca
pacity of machines and current status of products;  

4. Implement advanced optimization algorithms for rescheduling the 
production and maintenance plans in case of failure;  

5. Collect and store big data from the manufacturing processes and 
provide them for quality control and predictive maintenance tools;  

6. Measure the KPIs of the manufacturing processes. 

Integrating Artificial Intelligence (AI) with MES is one of the main 
research frontiers with the goal of adopting current generation of MES to 
the Industry 4.0 context. Production lines consist of robots, conveyor 
belts, machines, and supporting activities such as maintenance, quality 
control, and material handling aiming to efficiently manufacture the 
desired product. The inherent inter-dependency and uncertainty in 
manufacturing operations lead to a non-linear and stochastic system 
[13]. Despite this complexity, such systems should operate in an optimal 
condition in order to keep the company competitive in the market and 
meet the productivity, quality, and cost objectives, while guaranteeing 
safety in the working environment. AI tools have the unique capability 
to classify and identify non-linear and multivariate patterns that remain 
undiscovered by the production engineers. Moreover, AI tools such as 
machine learning and deep learning algorithms can be trained by big 
data sets generated by machines, ambient sensors, controllers, and 
worker records to reveal patterns that can contain important clues to 
solve challenging problems in manufacturing processes [14,15]. AI tools 
are widely applied to MES for productivity estimation, quality faults 
detection, root cause diagnosis of quality defects, job dispatching and 
scheduling, resource allocation, human-robot collaboration, machine 
vision, robot manipulation, condition-based/predictive maintenance, 
and manufacturing process control [16]. 

Digital Twin (DT) and Augmented Reality (AR) are two other current 
research frontiers in MES. DT is a simulation model representing the 
same characteristics of a physical object in the digital world. In other 
words, DT creates a bilateral connection between the intelligence layer 
of MES and the physical world [17]. It obtains data from the production 
line by reading sensors embedded in the shop floor in real-time. The 
current state of the production line is then provides to the MES intelli
gence layer. The intelligence layer uses AI tools to automatically su
pervise and control the physical world based on the inputs provided by 
the DT. After decision making, the intelligence layer provides the DT 
with actions that should be taken on the physical equipment [18]. AR is 
a core technology in facilitating human integration with MES. Although 
the focus of industry 4.0 is to build MESs that are seamlessly intelligent, 
flexible, adaptable, and autonomous, humans still play a key role in 
industry 4.0-based MESs [19]. AR is an interface through which humans 

Fig. 1. Information and management systems for planning and control [4].  

A. Shojaeinasab et al.                                                                                                                                                                                                                          



Journal of Manufacturing Systems 62 (2022) 503–522

505

can communicate with the digital world of the production line. As
sembly, maintenance, quality inspection, and logistics activities are the 
main fields in manufacturing systems where AR can be applied to sup
port human operators and provide them with visual data [20]. 

Characteristics of MES for Industry 4.0 - Industry 4.0 is about 
technologies that collect data to inform intelligent actions in the phys
ical world. These technologies help manufacturers improve efficiency 
and minimize manual work. Connected machines collect vast amounts 
of data that can provide valuable insight into various aspects of their 
operation. This data can be analyzed to identify patterns and insights 
and can be used to improve efficiency. MES software is an integral part 
of the Industry 4.0 transformation to gain real-time visibility of opera
tions [21]. It helps manufacturers reduce manual work and improve 
efficiency by implementing digital processes. It can also be used to 
transform operations by identifying areas of potential competitive 
advantage. 

MESs will still have a significant role in the production area. Optimal 
production process and support in decision making are the main tasks 
that must be performed in real-time. This can be achieved by monitoring 
and ensuring that the right resources and processes are available. This is 
accomplished with a fully integrated central MES. 

Industry 4.0 is a concept of future manufacturing that allows for 
reduced costs, improved quality, and higher throughput. It is a platform 
where smart products and equipment engage with one another auton
omously to provide real-time dynamic optimization. Some of the tech
nologies required for Industry 4.0 include the Internet of Things (IoT), 
mobile computing, cloud storage, big data, advanced analytics, machine 
learning, robotics, and Virtual Reality (VR) and AR. MES is the corner
stone of connection and coordination of these technologies. Companies 
must construct one crucial foundation component which is a new MES 
that is Industry 4.0-ready. MESs must be service-oriented and adaptable 
in order to be Industry 4.0-ready. That means they must be able to 
analyze IoT data, interact with AR, and run on both mobile and cloud 
platforms. Additionally, MESs should facilitate interactions between 

autonomous products and equipment on the shop floor [5]. 
Our contributions - There is an increasing interest in smart 

manufacturing and industry 4.0, yet, there is no systematic and exten
sive literature review that comprises the recent advancements and re
searches on MESs. In this paper, we first provide a systematic literature 
review that explores the status of the research in the related domains 
and highlights the fertile trending technologies that are employed in 
novel MESs and manufacturing systems. We then analyzed the related 
existing surveys to identify the technologies that have been reviewed in 
the field and extract the research challenges and gaps identified in the 
publications. Industry 4.0 requires an MES solution that broadly make 
the shop floor autonomous, adaptable and smart; To this end, main MES 
functionalities and five intelligence levels are presented, based on which 
we analyze the body of the literature and the proposed MES frameworks. 
On the other hand, we used these two metrics to evaluate novel indus
trial software systems. Based on our findings from the literature and the 
industrial cases, we propose a conceptual model that can carry out MES 
tasks with prediction capabilities and high adaptability, making it 
suitable for the Fourth Industrial Revolution. 

The rest of the paper is arranged as follows. Section 2 explains the 
research methodology and the research questions. In Section 3, and 
Section 4, detailed graph and bibliometric analyzes are carried out, 
resulting in the identification of influential authors, clusters, and 
research trends. Having identified the current trends, we reviewed the 
most recent surveys related to MES in Section 5. Section 6 presents the 
main functionalities of MES and introduces five intelligent levels. Then it 
categorizes the proposed solutions in literature into these levels and 
functionalities to identify the research gaps. The current ready-to-use 
novel MES solutions and their features and shortcomings are discussed 
in Section 7. It also presents some obstacles that the practitioners face 
towards adopting new MESs. In order to provide a concept of a smart 
and integrated MES that can alleviate the obstacles in industry 4.0 
realization, we introduce a model, IMES, in Section 8. We conclude this 
paper in Section 9 with a discussion on the research gaps, limitations, 

Fig. 2. The sources, processing and applications of data in manufacturing enterprises under industry 4.0 context [10].  
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and the future of MESs. 

2. Research methodology 

In order to evaluate the body of literature and identify its potential 
research gaps and the boundaries of knowledge, a literature review is 
required. A systematic literature review provides a neutral data collec
tion that not only facilitates the identification and evaluation of scien
tific works related to the research topic but also helps construct a better 
interpretation of the research advancements and trends [22]. The 
literature searching policy of this paper is structured based on Preferred 
Reporting Items for systematic review and meta-analysis (PRISMA), 
proposed by Moher et al. [23]. 

In this section, the research questions are outlined to define the scope 
and overall objective of this systematic review. This paper uses a search 
policy to include the relevant reviews and frameworks that are proposed 
in MES literature. The obtained data are then analyzed to extract some 
useful insights and answer the following research questions: .  

• RQ1. What are the current research trends in MES?  
• RQ2. How can we categorize the literature of MES with respect to 

their levels of intelligence?  
• RQ3. What are the challenges and research gaps of designing an 

IMES?  
• RQ4. What are the most influential institutions and countries on the 

current MESs?  
• RQ5. What are the challenges and obstacles for the practitioners in 

the adoption of higher intelligence levels in MESs?  
• RQ6. Can we propose a conceptual MES model that eases the 

implementation of Industry 4.0? 

A query, a two-level keyword assembly to gather information related 
to smart manufacturing literature, is defined to address these research 
questions. Table 1 shows the related keywords identified. In terms of the 
research context, a paper can be considered related if it includes at least 
one of “Manufacturing Execution", “Production Line", “Smart Factory" or 
“Manufacturing System", either in its title, keywords or its abstract. On 
the other hand, in terms of the model, only papers that include AI 
models, VR, AR or DT in their titles, keywords or abstracts are collected. 
These keywords define the scope and the focus of the paper. To narrow 
the analysis to research trends of the past 10 years, only papers pub
lished between January 2012 and the end of 2021 are considered. The 
papers are also limited to only English publishing sources, excluding 
book chapters and conference papers to analyze the papers with greater 
impact, higher quality, and more originality. More than 790 papers are 
extracted from the Web of Science database using this query. The 
extracted dataset is cleaned by removing duplicate papers and papers 
without any available full-text, resulting in 1383 papers to analyze  
Table 2. 

3. Bibliometric analysis 

The authors, affiliations, and country statistics of the selected papers 
from Web of Science are presented in this section. This type of analysis is 
helpful in a variety of ways. Identifying the influential researchers and 
universities in the MES can be beneficial for scholars and students 
interested in conducting research about MESs. Raw extracted data from 
the Web of Science is parsed to gather authors’ affiliations and countries 
of affiliations. Furthermore, determining the leading universities in the 
MES research area aids in highlighting relevant topics and new research. 
Also, Table 3 identifies the most active journals in intelligent 
manufacturing during the recent decade among the extracted papers 
from the Web of Science. The analysis in this study focuses on the 
following data fields: authors, title, abstract, keywords, journal, publi
cation year, affiliations and their countries, number of citations, and 
references. The raw data is manipulated using Python libraries such as 
NLTK, Pandas and some other built-in native functions of Python3 to 
gain valuable insights. The NLTK library is used to tokenize and analyze 
the abstract section of the papers. After tokenizing, the Term Frequency 
and Inverse Document Frequency (TF-IDF) algorithm is used to deter
mine trending topics in Section 3. Moreover, because the formatting of 
each column in the extracted data is not uniform, NLTK is used to parse 
complex columns. This paper uses the NetworkX Python library to 
generate graph-structured data. In terms of visualization, graph- 
structured data from the NetworkX library is passed to the Gephi tool 
to generate graphs. 

3.1. Influential authors 

. Table 4 outlines key contributing authors based on the number of 
published papers. The frequency of authors appearing in all 1383 papers 
is determined by extracting author names from the data. Only 643 out of 
4636 contributing authors have collaborated on more than one paper, 
leaving 3993 authors who’ve contributed in only a single paper. In 
addition, the top authors based on total citation among the MES-related 
papers are outlined in Table 5. Those two tables demonstrate that Robert 
X. Gao has put a lot of effort into reaching smart manufacturing. His 
team focuses on deep learning (DL) and reinforcement learning (RL) to 
add more ability of perception to manufacturing processes to achieve 
better automation. An analysis to identify key paired authors who 
contributed together in more than one paper is also conducted. Inter
estingly, it shows that two authors who collaborate with each other most 
frequently also produce crucial and significant papers in the MES field. 
Li Xinyu and Gao Liang appear in both tables and have a considerable 
impact on the MES field. They use various techniques such as machine 
learning (ML), RL, and simulations to make MES more intelligent. This 
finding may point to the need for more active scholars to interact with 
authors from other institutions, countries, and disciplines to investigate 

Table 1 
The proposed two-level keyword assembly structure.  

Context Query Searching field 

Domain "Manufacturing Execution" or “Production 
Line*" or “Smart Factory" or “Manufacturing 
System*" or “Smart Manufacturing" or 
“Intelligent Manufacturing" 

Title & Keywords 
& Abstract 

Model / 
Technology 

"Computer Vision" or “Reinforcement 
Learning" or “Virtual Reality" or 
“Augmented Reality" or “Digital Twin" or 
“Deep Learning" or “Machine Learning" or 
“Machine Vision" or “Autoencoder*" or 
“Convolution* Net*" or “Long Short Term" or 
“Blockchain" or “5 G" 

Title & Keywords 
& Abstract  

Table 2 
The share of papers in each Web of Science category.  

Web of Science Categories No. papers Percentage 

Engineering Manufacturing  389  31.170% 
Engineering Electrical Electronic  278  22.276% 
Engineering Industrial  213  17.067% 
Computer Science Information Systems  193  15.465% 
Computer Science Interdisciplinary Applications  181  14.503% 
Operations Research Management Science  180  14.423% 
Telecommunications  163  13.061% 
Automation Control Systems  144  11.538% 
Computer Science Artificial Intelligence  142  11.378% 
Engineering Multidisciplinary  105  8.413% 
Materials Science Multidisciplinary  96  7.692% 
Instruments Instrumentation  90  7.212% 
Physics Applied  77  6.170% 
Engineering Mechanical  64  5.128% 
Chemistry Analytical  47  3.766%  
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smart MES issues, challenges, and barriers from various perspectives. 
To better examine highly influencing authors in the related area, co- 

authorship and topic-based relations of countries and universities are 
investigated in section 4. The investigation highlights that many of these 
authors have also co-authored highly influential research in this area, 
indicating a possible positive relationship between the quantity and 

quality of papers published by the key contributing authors. 

3.2. Influential institutes 

Investigating the affiliations reveals that 1418 universities and in
stitutions contributed to the MES research area, among 1438 primary 
papers collected. As shown in Table 6, Huazhong University of Science 
and Technology has had the most impact on this field regarding the total 
number of conducted papers. In addition, Table 7 provides insight on the 
overall citations of each university and institute, removing bias to ach
ieve a true judgment of the universities’ contributions. Although the 
majority of the top universities and institutions contributing to the MESs 
are from Asia, particularly China, universities and institutions from the 
United States and Europe are also represented. For instance, the most 
influential university in this field is Case Western Reserve University 
regarding the total citations. These top universities have worked on 
different methods such as deep learning, ML, RL, DT and simulations to 
make manufacturing at the MES level more intelligent. 

3.3. Countries leading the MESs 

Another organizational level analysis is the recognition of influential 
countries in the literature. The results are depicted in a worldwide 
heatmap, Fig. 3, which demonstrates that China has a significant lead in 

Table 3 
The most active journals in intelligent MES since 2009.   

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total 

IEEE Access – – – – – – – 1 5 12 14  35  30  97 
Journal of Manufacturing Systems – – – – – – – – 1 10 1  20  36  68 
International Journal of Advanced Manufacturing 

Technology 
– 1 1 – – 1 1 1 2 5 4  18  18  52 

Sensors – – – – – – – – 1 4 7  12  21  45 
Applied Sciences-Basel – – – – – – – – 1 1 3  9  30  44 
IEEE Transaction on Industrial Informatics – – – – – 1 – – 1 1 8  8  12  31 
International Journal of Production Research – 3 2 2 – – – 1 – 1 4  11  7  31 
Robotics and Computer-Integrated Manufacturing 2 – 2 – – – 1 1 – 1 3  12  8  30 
Journal of Intelligent Manufacturing – – – 1 – – – 1 1 1 3  11  8  26 
International Journal of Computer Integrated 

Manufacturing 
– – – – 1 – 2 – – – 5  4  13  25 

Computers & Industrial Engineering 1 – 2 – – – – 1 3 2 7  5  21   
Computers in Industry – – – – – – – – – 1 5  6  6  18 
Sustainability – – – – – – – – – – 2  8  8  18 
CIRP Annals - Manufacturing Technology – – – – – – – – 1 1 3  4  5  14 
Expert Systems With Applications 2 – – 3 – – – – – – –  1  5  11  

Table 4 
Top influencing authors by number of papers.  

Author Name #Papers 

Gao, Robert X.  17 
Liu, Qiang  14 
Tao, Fei  14 
Leng, Jiewu  12 
Li, Xinyu  11 
Gao, Liang  11 
Chang, Qing  8 
Chen, Xin  8 
Shiue, Yeou-Ren  8 
Zhang, Ding  7 
Park, Kyu Tae  7 
Xu, Ke  7 
Wang, Lihui  6 
Zhong, Ray Y.  6 
Nee, A. Y. C.  6 
NeeZhang, Jianjing  6 
Noh, Sang Do  6 
Zheng, Pai  6 
Wen, Long  6 
Wu, Dazhong  6  

Table 5 
Top influencing authors by number of citations.  

Author Name #Citations 

Gao, Robert X.  1945 
Tao, Fei  1449 
Yan, Ruqiang  1216 
Gao, Liang  1143 
Li, Xinyu  1118 
Zhao, Rui  1117 
Wen, Long  1100 
Mao, Kezhi  1068 
Wang, Peng  993 
Wang, Jinjiang  891 
Wu, Dazhong  800 
Chen, Zhenghua  780 
Liu, Qiang  671 
Leng, Jiewu  648 
Zhang, Yuyan  639  

Table 6 
Top influencing affiliations by number of researches.  

Affiliation Name #Papers 

Huazhong Univ Sci & Technol  37 
Beihang Univ  28 
Guangdong Univ Technol  23 
Xi An Jiao Tong Univ  21 
Nanyang Technol Univ  21 
Shanghai Jiao Tong Univ  17 
Zhejiang Univ  16 
Case Western Reserve Univ  16 
Chinese Acad Sci  16 
Natl Cheng Kung Univ  15 
Tsinghua Univ  14 
Univ Hong Kong  14 
Northwestern Polytech Univ  14 
Natl Tsing Hua Univ  14 
Nanjing Univ Aeronaut & Astronaut  13 
Northeastern Univ  12 
Hong Kong Polytech Univ  12 
Univ Michigan  12 
Natl Univ Singapore  12 
Donghua Univ  11 
Sungkyunkwan Univ  11  
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this area. After China, the next two important countries that contribute 
significantly to this research area and play a key role in pushing forward 
the boundaries of MES research are the United States and South Korea, 
respectively. In order to have a more sense about the contribution of 
each country, there is a contribution number in the heatmap as well. As 
it is shown, the identified top three countries- China, USA and South 
Korea- together share more than 40% of the literature. 

3.4. Relation between GDP and smart manufacturing 

Following the identification of leading countries in smart 
manufacturing, it is worthwhile to investigate the relationship between 
GDP and the amount of effort in making manufacturing more intelligent  

Fig. 4Fig. 5. 
Fig. 3 demonstrates the most influential countries that have made 

MES more intelligent. Furthermore, Fig. 6, shows the correlation be
tween the GDP of different countries in 2020 and their impact on the 
smart MESs. As it can be seen, there is a strong positive correlation 
between these two features. The Pearson correlation coefficient of 0.76 
with a p-value of 0.003 shows that the computed correlation number is 
statistically significant. However, this correlation cannot show any 
causal effect and cannot be interpreted that the countries with higher 
GDP have contributed more significantly to the researches published in 
this domain. Yet, for two countries having relatively lower GDP, the 
number of collaborations and publications was meaningfully high. 

Another normalized correlation of the previous one is the correlation 
between world GDP during years and the number of i-10 papers for each 
year. This statistic shows us a correlation of 0.66 with a 0.01 p-value. It 
means there is a strong and positive correlation between having influ
ential papers in the smart MESs and world GDP but no implication of 
causality. 

4. Network analysis and literature mapping 

This section investigates some network analysis and connections 
between countries, topics, and authors for a better understanding of 
contributors in novel MESs. In addition, a brief overview of the trending 
technologies used in smart manufacturing is presented, along with 
several research examples utilizing those technologies. 

4.1. International collaborations 

Co-authorship among different countries is another factor that is 
investigated. The countries that contribute the most to this area are 
shown in Fig. 3. China is the most active country, followed by the United 
States, with a significant amount of work over other countries. 

Table 7 
Top influencing affiliations by number of citations.  

Affiliation Name #Citations 

Case Western Reserve Univ  1945 
Beihang Univ  1699 
Nanyang Technol Univ  1443 
Huazhong Univ Sci & Technol  1384 
Xi An Jiao Tong Univ  1320 
China Univ Petr  892 
Guangdong Univ Technol  865 
Natl Univ Singapore  687 
Univ Cent Florida  490 
Natl Cheng Kung Univ  436 
Grenoble Inst Technol Grenoble INP  417 
Univ Fed Rio Grande do Sul  417 
Univ A Coruna  402 
Penn State Univ  395 
Shanghai Jiao Tong Univ  391 
Univ Bremen  373 
Univ Auckland  355 
West Virginia Univ  353 
Hong Kong Polytech Univ  352  

Fig. 3. Heatmap of country contributions to MES literature.  
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Regarding the co-authorship between countries, countries’ contribu
tions are collected, and the result is shown in Table 8. It indicates that 
the most frequent collaborations come from USA and China, the two 
countries that are also the most active in this field, with 30 paper con
tributions. Surprisingly, China and Singapore are the second-highest 
contributor pair, while Singapore singularly ranks 9th among the 
countries’ influence on the smart MESs. For better visualization, a 
contribution graph is presented in Fig. 4. In this graph, countries with a 
high number of co-authorship have a stronger red edge between them. 
Moreover, the names of countries appear larger with higher levels of 

contribution. 

4.2. Trending topics during time 

To determine the trending topics, this paper uses a new method 
adopted from a popular classic technique in natural language processing 
(NLP) called TF-IDF. The main idea behind TF-IDF is to determine the 
frequency of words as well as the commonness of each word [24]. This 

Fig. 4. Hub countries co-authorship weighted graph.  

Fig. 5. GDP vs. i-10 papers of MES during time.  Fig. 6. Smart MES contribution and corresponding GDP in the 2020 among 
different countries. 
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paper uses the same idea for calculating commonness in the domain of 
trending topics. Grouped based on each topic in a particular year, we 
calculate what portion of the papers in the last three years have been 
related to the same topic. A higher percentage means that the topic was 
commonly used in the previous three years; hence it is more common. 
On the other hand, if the percentage is low, the topic in this area, 
although not common, it is more niche. Specifically, ρ

log2
δ
N
, where ρ de

notes the number of papers that use a certain topic in the year and δ 
denotes the number of papers that have used certain topic in previous 
three years and N is number of all papers in the MES in previous three 
years, is determining trendiness. Resulted trending topics that help MES 
to be more intelligent are investigated and are available per year in the  
Table 9. 

In 2009, Li et al. investigated and solved a small dataset problem 

which most manufacturing systems face in the early stages due to lack of 
data. They propose a new method for sample generation - non-linear 
virtual sample generation (NVSG) - to overcome the aforementioned 
problem in manufacturing. They use a special non-linear classification 
technique to generate virtual samples. Their research is successful in 
inspiring more research that brings machine learning into MES to 
overcome problems and achieve an intelligent MES [25]. In 2010, 
Hallbeck et al. used the power of VR to fill the gap between available VR 
systems and the VR needs for small and medium-sized enterprises 
(SMEs). In their study, VR is used as a tool for designing early work
stations by developing a simulation tool that provides critical informa
tion on layout for high efficiency, especially for SMEs [26]. Also, 
Zamfirescu et al. used AR technology to guide human operators and 
avoid human fault in the cyber-physical systems. Their work also ad
dresses social aspects when this concept is adopted in factory automa
tion. AR was the most trending technology used in novel MESs in 2016 
[27]. 

In 2011, Lee et al. used machine vision methods to perform quality 
assurance tasks in a glass production line. They place a CCD camera and 
laser diode to run a computer vision algorithm that measures the 
thickness of produced glass in real-time. Their study has inspired many 
intelligent automated quality control methods leading to machine 
vision-enabled manufacturing quality assurance [28]. 

In another paper, Liang et al. use machine learning techniques, 
especially regression, to make grinder systems in the production line 
more flexible and efficient. Because some factors of the grinding process 
are time-variant, there is a challenge to precisely control grinding 
removal for free-formed surfaces. They propose an off-line planning 
strategy for parameter tuning of the grinding robot based on an adaptive 
modeling method to construct a high-quality robot grinding system. This 
research is another study that uses machine learning techniques to make 
manufacturing more intelligent [29]. 

In 2013, Leiva-Valenzuela et al. used pattern recognition methods to 
first identify the orientation of blueberries, then separate stem and calyx 
ends, and assess damage to fungally decayed, shrivelled, and mechani
cally damaged blueberries. This research was crucial at that moment 
because the production of the South American blueberry had increased 
significantly during the years [30]. 

Umar et al. [31] use meta-heuristic algorithms to make 
manufacturing systems more intelligent. The paper uses a hybrid genetic 
algorithm to achieve a method for integrated scheduling, dispatching, 
and conflict-free routing of jobs and automated-guided vehicles in a 
flexible manufacturing systems environment. The proposed genetic al
gorithm applies a multi-objective fitness function that uses an adaptive 
weight approach to assign weights to each objective in every generation 
based on objective improvement performance. This study shows the 
importance of meta-heuristic algorithms in MESs. This type of algo
rithms can be used both for assigning parameters of the production line 
components and the optimization of these components, as well as the 
parameter tuning of the algorithms based on a neural network in the 
MESs. 

In the previous papers, many researchers perform machine learning 
algorithms to achieve an intelligent MES. But now, considering the 
noise, varying length and irregular sampling behind sensory data, this 
kind of sequential data cannot be fed into classification and regression 
models directly. In 2017, Wang et al. performed deep learning algo
rithms and developed effective machine health monitoring systems. 
They address raw sensory data challenges by designing Convolutional 
Bi-directional Long Short-Term Memory networks (CBLSTM) instead of 
previous fusion-based methods [32]. 

In the last five years, DTs have become one of the most favorite 
technologies in manufacturing. This technique is used for a more real
istic staging and simulation using available data. Kurfess et al. present 
outstanding research which is integral to realizing a complete digital 
model of the shop floor, known as the Shop Floor DT that can be used for 
production control and optimization. This research describes the 

Table 8 
Top country pairs with a high co-authorship in the intelligent MES.  

First Country Second Country #Papers Contributed 

China USA  110 
China England  46 
China Singapore  40 
China Canada  32 
China Australia  26 
China Taiwan  24 
USA England  22 
China Sweden  18 
China Saudi Arabia  16 
USA Germany  16 
USA South Korea  16 
China South Korea  14 
China France  12 
USA Sweden  12 
USA India  10 
USA Taiwan  10 
Germany Spain  10 
Italy England  10 
Sweden England  10  

Table 9 
The top four trending topics and technologies used for making MES more 
intelligent regarding year, both being niche topic and high frequency of papers, 
are considered as described in Section 4.  

Year First Trending 
Topic 

Second 
Trending Topic 

Third Trending 
Topic 

Fourth 
Trending Topic  

2021 Digital Twin Deep Learning Reinforcement 
Learning 

5G  

2020 Digital Twin Deep Learning Blockchain Reinforcement 
Learning  

2019 Digital Twin Blockchain Deep Learning Computer 
Vision  

2018 Deep Learning 5G Reinforcement 
Learning 

Digital Twin  

2017 Deep Learning Digital Twin Machine 
Learning 

Blockchain  

2016 Augmented 
Reality 

Machine 
Learning 

Virtual Reality Computer 
Vision  

2015 Augmented 
Reality 

Virtual Reality Computer 
Vision 

Machine 
Learning  

2014 Augmented 
Reality 

Computer 
Vision 

Virtual Reality Meta-Heuristic 
Algorithms  

2013 Deep Learning Computer 
Vision 

Machine 
Learning 

Reinforcement 
Learning  

2012 Reinforcement 
Learning 

Machine 
Learning 

Meta-Heuristic 
Algorithms 

Virtual Reality  

2011 Computer 
Vision 

Machine 
Learning 

Meta-Heuristic 
Algorithms 

Virtual Reality  

2010 Computer 
Vision 

Reinforcement 
Learning 

Virtual Reality Meta-Heuristic 
Algorithms  

2009 Meta-Heuristic 
Algorithms 

Virtual Reality Machine 
Learning 

–  

2008 Machine 
Learning 

Virtual Reality – –  
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development and implementation of a new MES, powered by mobile 
devices and cloud computing tools, that combines MTConnect data with 
production data collected from operators. Because of the low cost of 
implementation, the proposed MES is more fit for small manufacturing 
enterprises [33]. 

In modern manufacturing, most of the tasks are distributed on the 
cloud. One of the major challenges in cloud manufacturing systems is job 
scheduling for multi-projects. In other words, multi-projects face a 
multi-agent problem and scheduling should be addressed regarding 
multi-agent challenges. Chen et al. have significant research with the 
same research question. For tackling the problem, they perform a rein
forcement learning algorithm for assigning policy (RLAP) of scheduling. 
Afterward, they design a dynamic state, representing an algorithm for 
agents, to determine their decision environment when using RLAP [34]. 
Their research yields excellent results, with significant improvements in 
both service load and schedule quality. Reinforcement learning is one of 
the most efficient and working methods, especially when a problem is 
multi-agent like scheduling, mobile robot collaboration, and task 
management. 

Table 9 demonstrates that, beyond 2017, blockchain technology will 
continue to be one of the most popular MES and smart manufacturing 
technologies. There are a lot of applications of blockchain in 
manufacturing, such as edge computations and supply-chain. Shahbazi 
et al. have recently published a paper about designing a traceable food 
supply chain using the power of blockchain, machine learning, and 
fuzzy logic. They use the intrinsics of blockchain, which is fully traceable 
as well as being secure. They called their developed food supply-chain 
method Blockchain Machine Learning-based Food Traceability System 
(BMLFTS) that is based on the shelf life management system for 
manipulating perishable food [35]. There is no doubt that the popularity 
of blockchain and its features will lead it to be one of the most prominent 
technologies in MES and manufacturing in the coming years. 

In recent years, one of the other trending technologies related to 
smart manufacturing is 5G. As it can be seen in Table 9, 5G has been 
attracting researchers’ attention focusing on smart manufacturing since 
2018. This technology is inevitable in the future of all intelligent pro
duction lines due to the volume of data generated in real-time systems. 
Cheng et al. at 2018 have claimed some of the most important reasons to 
start using 5G in cyber-physical manufacturing systems (CPMS) and 
outlined characteristics, key technologies and challenges of the 5G based 
Industrial IoT (IIoT). They have mentioned that in IIoT devices, real- 
time monitoring without delay is one of the crucial needs and systems 
with higher latency would be costly [36]. 

5. Insights from related surveys 

So far, the initial bibliometric and network investigations are con
ducted and the promising topics and technologies are identified to be 
considered by researchers and practitioners who want to contribute to or 
study new MES frameworks. In order to address the RQ3, the paper 
reviews the literature to find opportunities, challenges and research gaps 
of designing an efficient MES and also analyzes existing survey papers in 
MES to know the relevant subject and technologies in MES that have 
been reviewed. In [37], Emrah Arica and DJ Powell develop and propose 
a taxonomy for characterizing MES to help in the efficient selection and 
successful implementation of MES. They expound on how MES can 
leverage the industry 4.0 technologies such as Internet-of-things, In
dustrial Big Data, Visual Computing, and Cyber-security to enhance 
their functionalities and fit for use in smart manufacturing systems. 

Ugarte et al. [8] shows the state of MES as of 2009 in terms of MES 
architectures and models, connectivity and network, and data process
ing by referencing the technological trends and improvements to com
mercial MES solutions. This paper highlights the major challenges 
related to the use and implementation of MES technologies on the shop 
floor and examines the future opportunities for research and develop
ment, taking into consideration only commercial MES solutions as of 

2009. Flexible manufacturing, better quality and improved productivity 
are the expectations of the next generation industry- Industry 4.0. This 
highlights the limitation of the centralized organization system to 
handle complexities and establishes that focus should be on multi-agent 
technologies in manufacturing systems [38]. [8] laid emphasis on the 
quality and the need for high-velocity information processing as a result 
of the advent of Industry 4.0. 

Another survey paper by Jaskó et al. [5] presents three main points 
with the assumption that, if analyzed properly, they would facilitate the 
development of Industry 4.0-ready MES and serve as a guide for engi
neers and researchers in the field of MES. It explicitly states three 
questions that need to be addressed in order to design an Industry 
4.0-ready MES and proposes solutions to these questions. The questions 
are: “What are the requirements of MESs in Industry 4.0?", “What kind of 
standards do exist which need to be considered?", and “What kind of 
modern, effective methods do exist in this area?". The paper confirms a 
conclusion made in [37], which suggests how MES can benefit from 
Industry 4.0 technologies. The MESs should interconnect all components 
of cyber-physical systems in a seamless, secure, and trustworthy manner 
to enable high-level automated smart solutions. Also, they recommend 
that a new generation of linkable data sources should be based on 
semantically enriched information [5]. In summary, this paper analyzes 
the Industry 4.0 requirements of MESs in terms of functionalities (i.e., 
what is required of MESs, what capabilities and functionalities should 
they have to satisfy these requirements and be Industry 4.0 ready), gives 
an overview of MES development methods and standards, and discusses 
the ontology-based and semantic models that can support such devel
opment.Generally, there is a lack of adequate research addressing the 
role of ERP and MES systems in Industry 4.0. The industry-led tech
nology standardization (i.e., RAMI4.03 and IIRA4), and the main bulk of 
academic research on Industry 4.0 are completely disconnected [39]. 

The research limitations and remarks regarding the trending tech
nologies are pointed out as follows: 

1. Many ML-based models are applied to improve the quality of prod
ucts, reduce machinery downtime, and increase machinery opera
tional speed. These models have focused on single-server stations; 
however, new ML-based models should be defined for multi-server 
cases. On the other hand, applications of DL-based models in pro
duction lines are not explored in detail yet, while they can further 
improve the performance of currently applied ML models [40]. 

2. ML is widely applied for designing Predictive Maintenance applica
tions, but it is still a new approach. [41] evaluates the proposed 
ML-based solutions in this field and concludes that there is a lack of 
improvement on equipment sensing approaches to improve data 
quantity and quality.  

3. Although RL is commonly used for process scheduling, present RL- 
based models have some generalization difficulties. Moreover, due 
to the complexity and dimension of the job shop scheduling problem, 
these models still encounter some flaws [42].  

4. Since DTs in production planning has become a hot topic in recent 
years, Kritzinger et al. conducted a review of the papers published in 
this field [17]. They found that these models mostly employ 
mid-level time-frequency simulations, however, the DT can also be 
used in domains with higher time-frequency. The authors highlight 
that in this area, a real DT is relatively scarce, while the majority of 
the proposed models are, in fact, either digital models or digital 
shadows.  

5. Most of the DT-related literature only focuses on the conceptual 
models without concrete case studies. The majority of proposed DT 
applications in manufacturing do not mention the connection of the 

3 Reference Architectural Model Industrie 4.0  
4 Industrial Internet Reference Architecture 
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DT environment to the control system of the physical equipment 
[43].  

6. Only a limited set of services and operations are offered in one single 
DT application, therefore a more comprehensive model should be 
developed to contain other operations. Further, the proposed DT 
models in the literature are usually not integrated with existing 
control systems [43].  

7. Many AR systems are developed for maintenance, assembly, quality, 
logistics, and machine set-up applications in the literature. None
theless, enhancing the processing speed and ergonomics of AR tools 
still remains as the main challenges of this technology [20].  

8. Chandra et al. review the VR applications in manufacturing [44]. 
They conclude that although VR provides high-quality visualization, 
interaction, and immersion, it still has some difficulties in becoming 
a high-fidelity, industrial-grade tool in digital factories. Besides, VR 
tools cannot stand alone and must be properly integrated with other 
simulation tools and machine control drivers. It also requires an 
intuitive interface. 

9. Another survey [45] investigates the literature of blockchain appli
cations to overcome the existing security-related Industry 4.0 prob
lems. The authors outline that there is a lack of an industrial 
blockchain standard for manufacturing applications. Hence, imple
menting blockchain encounters some policy challenges when the 
manufacturer wants to transform from a conventional system to a 
decentralized network. These challenges are chiefly related to reg
ulatory recognition and interoperability and standardization in i) 
manufacturing event data models for blockchain; ii) industrial 
consensus protocols; iii) interplay protocols; iv) signature algo
rithms; and v) Web-based access protocols which are essential for 
enabling blockchain systems to be interoperable in the 
manufacturing system. 

6. MES functionalities and intelligence levels 

In this section, the paper presents two taxonomies to categorize the 
proposed MES-related models in the literature. Based on these taxon
omies, we assess whether a model meets the requirements of an Industry 
4.0-ready MES. In fact, We use these two criteria to determine if the 
model comprises the tasks that an MES should execute, as well as how 
competent the model is in terms of performing the tasks autonomously 
and intelligently. Accordingly, we introduce the tasks that should be 
done at the MES level and then provide some levels for the intelligence 
aspect of the system. 

Over the past three decades, the Manufacturing Enterprise Solutions 
Association (MESA) has identified eleven MES functions [49]. These 
functions include (1) Resource allocation and status; where the sys
tem manages the resource information and records a detailed history of 
the resources enabling the manufacturer to optimize production plan
ning. (2) Operations scheduling; where the system should deal with 
the operation sequences and parallel or overlapping operations. (3) 
Dispatching product units; these tasks are associated with managing 
and monitoring the flow of production units, material and final products 
in the system. (4) Document control; where the system controls the 
forms, records, and documents related to the production line. (5) Data 
collection and acquisition; the MESs collect the data from the shop 
floor and maintain it in a database. (6) Labour management; the MESs 
should optimize the labor resources and allocate them in an efficient 
manner. (7) Quality management; where the system should recognize 
the unhealthy, broken, and low-quality product and maintain quality 
assurance. (8) Process management; this task is associated with pro
duction monitoring, decision systems, and production procedures. (9) 
Maintenance management; an MES solution should consider the 
maintenance activities on the machinery and the manufacturing phys
ical assets. (10) Product tracking; the system needs to provide infor
mation about activities done on each product and the status of the 
product. (11) Performance analysis; the system has to provide some 

insights about the overall performance of the production line, the assets 
and the software system. 

Nonetheless, a review of the literature on MES research solutions 
reveals that many of these tasks are neglected. In fact, there is no model 
that provides an integrated intelligent solution for all of these tasks. 
Moreover, many of the proposed solutions are not fully intelligent, 
automated and adaptable enough to substitute human labor. Therefore, 
to extract a better insight about the degree of smartness, this paper 
identifies five intelligence levels towards the realization of Industry 4.0 
based on the Industry 4.0 Maturity Index [50]. These levels range from 
the lowest smartness, where simple computer solutions assist the system 
to perform more efficiently and optimize tasks, to the highest, where the 
system is intelligent enough to adapt itself to various scenarios in 
real-time. Table 10 summarizes 14 recent papers that have surveyed the 
new technologies in manufacturing systems. 

6.1. Digitalization; Computerization of MES 

The digitalization level of intelligence comprises the first two 
maturity levels of the Industry 4.0 Maturity Index [50], computerization 
and connectivity. These levels, considered together, are required for 
entry into the Industry 4.0 segment of the transformation path outlined 
in the index. The basis for digitalization is computerization, which in
volves the targeted use of information technologies (IT) to improve 
manufacturing practices [51] (for instance, a programmable machine 
that can perform repetitive tasks or a simple inventory system). How
ever, each computerized system at this level is independent of the others 
and lacks the ability to communicate with one another. 

The connectivity level brings communication by replacing the in
dependent IT applications with network-connected equivalents. In this 
stage, the data from each information source is collected automatically 
in real-time and sent to the MES [5]. However, there is still a gap be
tween the IT systems and the operative technologies as complete inte
gration is not yet achieved at this intelligence level [50,51]. 

6.2. Visibility; Sensor-based MES 

MES operations are highly reliant on sensor readings for realizing the 
current production status. The visibility level of MES collects and or
ganizes data from sensors spread out across the factory floor. Base 
sensors, such as proximity sensors, are used in the low-level controllers 
to manage and operate the machines and devices of each manufacturing 
process. However, apart from the basic control, MESs can also draw 
insights from the data produced by these sensors. Other process- 
dependent sensors, such as temperature and pressure sensors, are also 
used in monitoring and ensuring each resource is operating as expected. 
These sensors can send data to the MES for monitoring production, 
assessing efficiency, and detecting error sources. 

Along with the control level sensors, the visibility level of an MES 
also deals with the transfer of data between processes. This is important 
in MESs for keeping track of workpieces and specific details of an order. 
Auto-ID technologies such as RFID tags or barcodes are commonly used 
to label and track a workpiece throughout the production line [52–54]. 
With read and write capabilities at each stage, specific details can easily 
be identified and updated regardless of the production flow. These 
technologies are an important source of data, enabling real-time data-
based transparency [55]. Collecting the vast amounts of data generated 
by sensors and auto-ID technologies allows for a complete recording of 
the production process from start to finish [51]. 

6.3. Transparency; adding perception to MES 

Beyond basic sensor data, MESs can gain a more perceptive under
standing of the production floor with the use of smart sensors and 
intelligent software. The transparency level of an MES brings synthetic 
intuition to software by enabling a more comprehensive record of the 
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manufacturing environment. This involves compiling all data into a 
manageable format for analysis and advanced processing. With the 
organized data, AI applications can be utilized to gain knowledge from 
the historical events [56]. Fahle et al. review current AI trends in 
manufacturing and identify the areas in which machine learning has 
been implemented to improve manufacturing processes [56]. 

Improving the MES’s real-time perception of the factory can lead to 
better safety precautions, maintenance scheduling, and overall opera
bility. For instance, visual and audio sensors can provide MES with data 
to aid in human-machine collaboration, improving operator’s control of 
equipment as well as safety responses of machines. One example 
demonstrated by Duckworth et al. shows the ability to extract low- 
dimensional representations of human movement from visual data 
perceived by mobile robots [57]. Their model identifies consistent pat
terns that represent detailed human body positioning and pose 

estimation, which could be applied in the MES perception level to gain 
knowledge of workers within the factory. 

6.4. Prediction; Utilizing prediction methods in MES 

In MES, the prediction level can be defined as the response to two 
questions of “What will be the state of the system in the future?" and 
“How this state transition will happen?". An effective response to these 
questions will improve the system’s dependability and assist the MES in 
better preparing itself for future decisions. To this end, researchers have 
proposed solutions that simulate future realistic and probable scenarios 
while also providing system optimization capabilities. One of the issues 
that should be addressed within the MES prediction level is the ability to 
anticipate the requirement for maintenance of machinery, equipment, 
and robotics at a specific future time. Maintenance is a crucial factor in a 

Table 10 
Summary of the selected surveys.  

Paper Focus SLR 
* 

Taxonomy Proposed model Industry Case study Year 

[16] AI solutions in the 
manufacturing for 
tackling different kind of 
challenges 

Yes NA NA General NA  2020 

[45] Blockchain applications 
to overcome existing 
industry 4.0 problems 

No (1) Cybersecurity Issues in Smart 
Manufacturing; (2) Metrics that shows 
Blockchain is a good solution for an Issue 
in Manufacturing; 

NA General NA  2020 

[46] Machine learning 
applications for 
sustainable 
manufacturing 

Yes Main challenges to sustainable 
manufacturing, Machine learning 
algorithms with their application area in 
manufacturing 

An ML-based sustainable manufacturing 
(SM) framework. In the framework, three 
main components are considered, i.e. 
different phases of SM, opportunities of ML 
techniques and benefits from ML in all three 
dimensions of sustainability. 

General NA  2021 

[5] Impact of Industry 4.0 on 
MESs 

No (1) Maturity levels: Visibility, 
Transparency, Modularity, Predictive 
capability, Adaptability, Interoperability; 
(2) Integration direction: Horizontal, 
Vertical 

NA General NA  2020 

[17] DT in Manufacturing No (1) Level of integration: Digital Model, 
Digital Shadow, DT; (2) Focused area: 
Layout planning, Product life cycle, 
Process design, Maintenance 

NA General NA  2018 

[44] VR in Manufacturing Yes VR usage in digital factory: 
Manufacturing, Layout planning, Robot 
path planning, Virtual prototyping, 
Training 

NA General NA  2021 

[39] Assessing the readiness of 
the agile manufacturing 
models for Industry 4.0 

No Industry 4.0 reference architectures: 
RAMI 4.0, IIRA 

An OPC-UA-based architecture General Virtual assembly 
line  

2019 

[47] ML in mining industry Yes (1) Application fields: Exploration, 
Exploitation, Reclamation; (2) Dataset 
type: Laboratory data, Data field, Open- 
source 

NA Mining NA  2021 

[41] ML in Predictive 
Maintenance 

Yes (1) ML techniques; (2) Dataset type: Real, 
Synthetic 

NA General NA  2019 

[43] DT in Manufacturing No NA An OPC-UA-based DT that simulates a multi- 
station with the purpose of energy 
consumption monitoring 

General A prototypical 
mobile phone 
assembly line  

2019 

[42] RL in Process Scheduling No NA A Deep RL architecture for job shop 
scheduling 

General NA  2018 

[20] AR applications in 
intelligent manufacturing 

Yes Field of application, technology to 
visualize AR content, methodology to test 
AR applications, metric to evaluate the 
capability of the AR prototype; 

NA General NA  2020 

[40] Machine learning 
applications in 
production lines 

Yes The studies were categorized according 
to the industry domain, targeted process, 
production line problem, machine 
learning model; 

NA General NA  2020 

[48] Applications of machine 
learing in manufacturing 

No Field of application: decision support, 
plant and operations health 
management, data managment, lifecycle 
management 

NA General NA  2018  

* Systematic Literature Review 
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company’s competitiveness because it has a direct impact on the man
ufacturer’s essential factors (i.e. the downtime, cost, deadlines and 
quality of the products or services) [58]. Advances in IoT devices and 
computational power have offered an unprecedented opportunity to 
gain insights from condition monitoring data and use them for intelli
gent predictive maintenance [59]. In recent years, many artificial in
telligence techniques have been proposed to reduce maintenance costs, 
increase operational performance, enhance safety systems, and achieve 
a maintenance decision-support system that allows the manufacturer to 
take timely actions and prepare for maintenance operations [60]. 
Nonetheless, one of the gaps in the scope of Industry 4.0 is the lack of 
sufficient attention to include the predictive maintenance in the pro
posed MES models [61]. 

As discussed earlier, digital models can be categorized into the dig
ital replica, digital shadow, and DT [62]. A digital replica highlights the 
automatic projection of system constructions. The digital shadow em
phasizes mathematical modeling to simulate and mimic the physical or 
chemical characteristics of a system. To support the interaction between 
the digital shadow and the physical assets and provide real-time feed
back to the system, the paradigm of DT is proposed. A DT integrates the 
multi-physics and multi-scale simulation of a system that can model the 
mechanical, electrical, software, and other discipline-specific properties 
across its lifecycle. A DT is therefore employed to optimize the physical 
product or system based on the updated real-time data synchronized 
from sensors [63]. 

Based on this definition, a DT is a high-level simulation system and 
integration paradigm which can fall in the MES prediction level. 
Through the study and investigation of information models, the DT can 
map physical information into cyberspace and manipulate physical ob
jects [10]. Uhlemann et al. propose a concept for the realization of DT in 
small and medium-sized enterprises, where the digital counterpart ac
quires the data within the production system to predict the service de
mand using simulation software [64]. In [63], the authors design a DT 
concept for human-cyber-physical manufacturing systems, whose ar
chitecture enables the flow of information between the production line 
and the simulation environment to make an AR-based visualization. In 
spite of the promising features that these models bring to the MES, they 
are not adaptive enough to cope with event-driven production planning 
systems. 

6.5. Adaptability; Self-optimization of MES 

This maturity level aims to use real-time data to make the best 
possible decisions in different scenarios that the system faces and enable 
the system to optimize itself. Most often, these decisions need to be taken 
immediately; therefore, an effective adaptive MES has to be agile 
enough to perform on a real-time basis. The adaptation can range from 
simple dilemmas to highly complicated decisions; hence, a smart MES 
solution should support multi-objective real-time decision-making. 

There are some self-optimizing and self-organizing intelligent sys
tems proposed in the literature. In [65], the authors propose a 
self-organizing system for a networked manufacturing environment 
where scheduling of the shop floors is synchronized to control the as
sembly line. They use some numerical experiments to evaluate their 
proposed conceptual model. Similarly, [66] develop a self-organizing 
assembly system that spontaneously organizes itself in the shop floor 
layout in response to the arrival of product orders and manages the 
agents during the assembly processes. In order to achieve a collaborative 
routing of products, [67] propose a multi-agent manufacturing system 
that dynamically handles the potential rescheduling of orders already in 
the system. The proposed model employs the available resources, and 
their state, in a time-efficient way. To schedule the production line and 
manage the processes, Zhang et al.[68] design a multi-agent system that 
organizes itself in a ubiquitous shop floor environment. To collect and 
process the real-time shop floor data, they deploy some wireless devices 
such as RFIDs. 

Nevertheless, these models and frameworks are only able to perform 
individual logical adaptations or limited MES functionalities autono
mously. There is still a lack of a comprehensive solution to support an 
entire adaptation process from start to finish. This process is often 
largely human-driven, primarily based on the experience of system in
tegrators. While there are methods and tools for solving specific prob
lems, these methods and tools are not integrated into a general 
framework that can be used in a wide range of scenarios in different 
industries. 

As the robots are not yet fully autonomous, sufficiently versatile and 
affordable by all industries, today’s industry still relies on the agility, 
intelligence and perception of human operators alongside speed, power, 
accuracy, repeatability and insusceptibility to fatigue of the robots[69]. 
The limited autonomy of robots has brought up the term 
Human-Machine Collaboration. Mukherjee et al. reviewed the levels of 
autonomy of robots in industrial settings and identified the challenges in 
achieving fully-automated robots, especially due to the lack of sufficient 
and proper datasets. They also concluded that adaptive robots require 
low processing times to be able to operate in a real-time manner, while 
in many cases, it is challenging due to the technical difficulties or lack of 
computational resources [70]. 

. Table 11 briefly summarizes over fifty related papers that have been 
published since 2010; It can be concluded that most of the so-called 
intelligent solutions fall in the first two intelligence levels, digitaliza
tion and visibility. The table also specifies the above-mentioned MES 
functions that each paper includes in its intelligent framework. As it is 
highlighted, each paper has only addressed a few of these functions. In 
the highest intelligence levels, adaptability, only a limited number of 
papers propose MES-related functionalities: for resource allocation [71], 
operations scheduling[72], process management [73] and quality 
management [74,75]. Therefore, as mentioned before, to achieve an 
efficient industry 4.0 platform where the system is fully autonomous and 
digitized, an MES with complete functionality is required. As it is shown 
in the table, the proposed frameworks by [78] and [79] have comprised 
more MES functionalities, however, their solutions have still not ach
ieved the adaptability level. 

Fig. 7 shows the percentage of papers covering each intelligence 
level in the reviewed literature. All the selected papers have achieved at 
least the first intelligence level, digitalization. Mathematical models, 
linear programming and meta-heuristic algorithms for job shop opti
mization have filled the literature. However, as we go to higher intel
ligence levels, there are fewer papers proposing MES-related solutions. 
There are just above 600 and 300 papers that reach the second and third 
levels, respectively. Papers that reach the visibility level are associated 
with the use of sensors and auto-ID technologies such as RFIDs and 
process-dependent sensors to collect the data and keep track of work
pieces in the shop floor. In the third level, on the other hand, the papers 
mostly propose AI algorithms to gain knowledge from historical events 
and provide deeper insight about the current state of the system. In our 
search, only 15% of the MES literature have used data-driven solutions 
to predict the future state of the shop floor. ML, DL and agent-based 
simulations are the most prevalent techniques at this level. As ex
pected, we found out that adaptable solutions are relatively rare in the 
literature, with less than 5% of the papers achieving this level. It spot
lights the gap in this level since there are still many MES tasks that have 
not reached adaptability. 

7. Current industrial solutions 

In the previous sections, we study the academic papers and outline 
the limitations and research gaps of solutions proposed in the literature. 
In this section, conversely, we go one step further and take a look at the 
industrial solutions that are provided in real business. We then discuss 
what kind of challenges and obstacles are out there that hinder the 
adoption of novel MES frameworks by the practitioners. 
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7.1. A review of novel industrial solutions 

In the domain of MES, there are some different solutions available in 
the market. These solutions may vary from standalone solutions to 
service-based solutions and from specific functionality to general pur
pose. In this work, some of the popular MES software, which include 
POMSNet Aquila [120], ABB MES [121], Siemens Opcenter [122], 
Proficy MES by GE Digital [123], 3DS’s DELMIAworks [124], and finally 
PLEX’s MES/MOM [125] have been studied in order to create a refer
ence point for this research. More information about the MES features 
that each system provides and their intelligence characteristics are 
presented in Table 12. 

POMSNet Aquila is designed with specific consideration for the life 
sciences industry [120]. It offers advanced biometric-based security 
features and features designed for Pharma 4.0. POMS markets its soft
ware as a flexible solution that does not require customization across 
different use cases, a one size fits all of MES software. 

ABB’s MES offers solutions designed for different industries [121]. 

Their marketing targets the following industries: discrete 
manufacturing; food and beverage; chemicals; pharmaceutical and life 
sciences; oil, gas and petrochemicals; cement manufacturing; metals; 
mining and minerals processing; and pulp and paper. ABB also provides 
other industry software for a truly customizable solution. 

Siemens Opcenter is a suite of industrial automation software 
covering a wide range of functionality [122]. Opcenter contains four 
separate MESs: Opcenter Execution Pharma, Opcenter Execution 
Discrete, Opcenter Execution Process, and Opcenter Electronics. Each of 
these MES solutions is targeted at a specific industry and can be com
bined with other Opcenter software for more diverse applications. 

GE Digital’s MES software, Proficy, is also a suite of solutions that 
can be combined to fit the specific needs of various manufacturers 
[123]. GE Digital markets its suite as a data-driven solution with intel
ligent manufacturing and business insights. One key feature that is 
commonly mentioned on GE Digital’s website is the application of lean 
principles throughout their software to reduce waste and improve pro
duction times. 

Table 11 
Solutions regarding MES functions proposed in the literature.  

Paper MES Functions Intelligence 
Level 

Solution Features Industry Year 

[71] 1–5 Adaptability 3D simulation - Order Batch to Robot Task Conversion algorithm General  2021 
[72] 2–5 Adaptability Metaheuristics (genetic algorithm) - Mathematical model General  2017 
[73] 8 Adaptability Double adaptive fuzzy sliding mode control - Numerical simulation General  2015 
[74] 5–7 Adaptability Robotized vision based quality control Home appliance industry  2014 
[75] 5–7 Adaptability Spatial repositioning of the vision system - optimizing Camera and Robot positions 

and settings 
General  2016 

[76] 1–2–5 Prediction Hybrid control solution based on ANN and LSTM Power Plants  2020 
[77] 1–2–5–8 Prediction Real-time multi-agent modelling General  2014 
[78] 1− 2–3–5–8–10–11 Prediction Agent-supported Simulation Environment General  2014 
[79] 1–2–3–5–8–10 Prediction DT (quad-play CMCO architecture) Glass manufacturing  2021 
[80] 5–7 Prediction IoT - Simulation - Machine Learning Casting industry  2018 
[81] 5–7 Transparency Model for heat resistance, image transmission, and data alignment could General  2018 
[82] 5–8–10 Transparency Conceptual solution Motor Manufacturing  2020 
[83] 1–5–10–11 Transparency RFID and UAV-based inventory control - Blockchain - Distributed ledger General  2019 
[84] 1–5 Visibility Fuzzy logic General  2014 
[85] 2–11 Visibility Heuristic mathematical model General  2018 
[86] 2–5–11 Visibility Metaheuristics (artificial bee colony algorithm) General  2020 
[87] 2–11 Visibility Discrete-event simulation model - Metaheuristics Semiconductors  2014 
[88] 1–2–5–11 Visibility Metaheuristics (hybrid genetic algorithm) General  2016 
[89] 2–5 Visibility Metaheuristics (differential evolution-fused particle swarm) - Numerical simulation General  2018 
[90] 2–3–5 Visibility Discrete-event simulation model General  2017 
[91] 2–11 Visibility Discrete-event simulation model General  2017 
[92] 2–5–11 Visibility Advanced production planning and scheduling General  2014 
[93] 2–5–11 Visibility Artificial immune systems - Priority dispatching rules General  2013 
[94] 7 Visibility Thresholding Sandwish panel 

manufacturing  
2019 

[95] 5–7 Visibility SVM General  2019 
[96] 5–7 Visibility Fuzzy segmentation - multi-instance learning General  2019 
[97] 1 - Digitalization Multi-agent modelling General  2005 
[98] 2–5–6 Digitalization Two-level optimization model General  2021 
[99] 2–5–6 Digitalization Mathematical model Automative industry  2017 
[100] 2–8–11 Digitalization Numerical simulation General  2016 
[101] 2–8 Digitalization Metaheuristics (Simulated Annealing algorithms) General  2019 
[102] 2–11 Digitalization Swarm intelligence - disjunctive graph-based model General  2014 
[103] 2–11 Digitalization Metaheuristics (artificial bee colony algorithm) - Fuzzy logic General  2016 
[104] 2–11 Digitalization Multi-objective integer linear programming General  2014 
[105] 1–2–5–11 Digitalization Metaheuristics (variable neighborhood search algorithm) Automative industry  2020 
[106] 2–5–11 Digitalization Mathematical model Automative industry  2013 
[107] 3–5 Digitalization Numerical simulation Semiconductors  2011 
[108] 3–5 Digitalization Numerical simulation Semiconductors  2016 
[109] 2–3 Digitalization Mathematical model Semiconductors  2018 
[110] 2–3 Digitalization Tabu Search - Monte Carlo simulation General  2013 
[111] 6–11 Digitalization Numerical simulation General  2007 
[112] 2–6–11 Digitalization Mathematical model Automative industry  2020 
[113] 2–6–11 Digitalization Mathematical model - Branch and bound algorithm Ceramic tile industry  2009 
[114] 2–6–11 Digitalization Metaheuristics (Genetic Algorithm) - Numerical simulation   2020 
[115] 2–7–9–11 Digitalization Mathematical model General  2011 
[116] 9–11 Digitalization Discrete-time Markov chain General  2013 
[117] 1–9–11 Digitalization Mathematical model Cell industry  2012 
[118] 1–9–11 Digitalization Mathematical model General  2012 
[119] 7–9–11 Digitalization Mathematical model General  2016  
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3DS offers a complete MES and ERP solution with DELIMIAworks 
[124]. DELIMIAworks is designed as an all-in-one solution that strives to 
“offer it all". Their software solutions are customizable with the option to 
use a built-in ERP solution or integrate with other standalone ERPs. 

The final MES solution considered in this survey is by PLEX systems, 
a Rockwell Automation company [125]. PLEX’s MES/MOM is a solution 
aimed at providing full visibility across the shop floor and business 
management. PLEX offers a paperless solution that automates tasks in 
order to prevent human error, with the goal of creating an error-proof 
shop floor. The unified user interface is designed as a single access 
point for production information and management. 

Of the considered MES software, all allow for the visibility intelli
gence level to be reached. Each enables real-time sensor data to be 
recorded across the entire manufacturing facility, permitting the current 
production state to be monitored. This record-keeping functionality also 
allows states and events to be tracked for a more comprehensive un
derstanding of a facility’s history. This provides a basic digital shadow 
that can show what is happening at any given time. The digital shadow is 
one of the key components of the visibility intelligence level and helps to 
make real-time management decisions based on real data [50]. 

Past the visibility level, some of the reviewed MESs also have func
tionality enabling basic data analysis. With these basic features, 
Opcenter, Proficy and DELMIAworks are reaching the transparency in
telligence level in some aspects of their software but still require more 
actionable insights to support complex and rapid decision making in 
order to fully encompass the transparency level. 

Further intelligence levels have yet to be reached with currently 
available MES solutions. The prediction intelligence level requires better 
anticipation of future events based on historical data accumulated by the 
MES. Proficy provides some basic predictive analytics to estimate ma
terial needs and forecasts future performance. However, more compre
hensive predictive capacity and integration with digital models are 
needed to provide the necessary insights for planning future actions. 

7.2. The challenges and impediments in adoption of novel MESs 

As outlined in the previous sections, an effective MES can serve as a 
backbone in bringing the advanced Industry 4.0 solutions to the factory 
floor. However, there stand a few obstacles that prevent the successful 

adoption of this powerful technology. Although the most challenges are 
common across the industry, the literature review indicated that there 
are also few region-specific barriers that hinder the widespread 
adoption. 

The primary and one of the most important barriers is the extensive 
amount of capital investment required to develop and maintain the MES 
solutions [126–128]. As a result, the benefit of these technologies is 
confined to a few multinationals and large firms with good financial 
standing [128]. On the other side, SMEs make the majority part of the 
economy. For example, 90% of the registered companies in Europe are 
SMEs [128]. While in Poland, SMEs account for 50% of the total revenue 
of the polish economy [127]. 

The second factor is the lack of a technically skilled workforce [129, 
128,127]. A proficient workforce is essential from two aspects. The first 
is to develop the MES solutions that are tailor-made to specific tasks or 
organizations. Such expertise again is associated with high expense in 
wages [127]. Secondly, the successful use of such technology also de
mands a certain skill set at the ground level. This may not be a concern in 
developed counties. However, in regions with a still growing economy, 
such as south Asia, most of the workforce working at this level have 
minimal to no qualifications [129]. 

The resistance to change is another common reason affecting the 
adoption of Industry 4.0 [129,127,130]. This resistance is further aided 
by the misconception of losing jobs to robots and machines [129,131]. 
The employee should be convinced about the benefits and advances of a 
novel MES for the adoption at large. The abundance of solutions is also 
one of the reasons behind the slower adoption rate of these advanced 
solutions [128]. The overwhelming rate of technological development 
has resulted in a wide range of solutions in the market. Therefore, it has 
become challenging to match the requirements of the SME to the right 
solutions. 

Furthermore, there are a few challenges that are specific to the 
geographical location of the region. For Poland, the challenge is asso
ciated with the old equipment in the majority of SMEs and language 
barriers in the skilled workforce [127]. The lack of public-private 
partnership for such a development is identified as one of the weak
nesses in Russia [131]. In India, lack of internet access, privacy, and 
security concerns pose additional predicament [130]. 

Apart from the aforementioned concerns with the adoption of novel 

Fig. 7. The percentage of literature that covers each intelligence level.  
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MESs, the development and implementation of such solutions constitute 
a wide range of additional challenges. Following are a few of such 
challenges as described in [132]:  

1. Lack of information: Often time collection of useful information 
and data is necessary to develop a solution.  

2. Lack of clarity of goal: One of the most challenging parts of 
developing a successful ML solution is to identify the right problem 
and define the performance metric to access the outcome. Projects 
with obscured scope have a very high chance of missing the mark.  

3. Convergence of cultures: Bringing operational expertise together 
with information technology is a very important aspect to build 
working solutions in Industry 4.0. The absence of such convergence 
would either result in poor digital infrastructure or unsuccessful 
deployment of the solution. 

8. The proposed conceptual model 

In order to answer RQ6 and fill the gaps based on the literature re
view, we propose a conceptual framework for IMES, illustrated in Fig. 8. 
The components of this schematic model are described in the following. 

8.1. IMES interface and controlling systems 

Machine to machine communications - Communication between 
devices, software, and databases is a key component for enabling In
dustry 4.0 smart factories, especially at the MES level. To make real-time 
control decisions, MES software requires receiving status updates from 
all connected devices across the shop floor at near instantaneous speeds. 
It also needs to send updates and instructions to these devices in order to 
manage and control the production processes. For this to happen, a fast 
and secure communication protocol is essential. Communication should 

also enable machines to communicate with each other to share infor
mation on available resources and operation states. The current, most 
widely adopted industry standard is the Open Platform Communication 
Unified Architecture (OPC UA) [133]. OPC UA is a standardized 
communication protocol initially developed for machine-to-machine 
communication in industrial automation [134,135]. This communica
tion platform enables standardized definitions of machine attributes 
such as data structures and interfaces and offers configurable security 
credentials [134]. 

Edge devices - Edge devices play an important role in IMES, 
enabling AI applications to process data where it is produced. Edge 
devices are IoT devices that perform relevant computations at the edge 
of a network rather than transmitting the data to be processed on the 
cloud [136]. Edge devices do not eliminate the need of the cloud, but 
rather they reduce the load on the network and can reduce the latency 
for AI-powered applications. This can speed up services and response 
times compared to a central or cloud-based processing method [136]. 
Cloud computing is still vital to MES operations and cannot be fully 
replaced by edge devices, but rather a hybrid edge-cloud solution is most 
beneficial [137]. Edge-enabled cloud architectures can relay important 
information to the centralized MES without having to send every single 
sensor reading and value. This can also increase security by eliminating 
the sharing of certain data over a network. 

IMES interface - Because of the many distinct elements that 
comprise IMESs, a single integrated management interface is required to 
keep things organized and easy to use. A centralized interface for 
managing MES software should not only allow for user-based manage
ment but also incorporate standardized APIs and protocols for inte
grating with other software that may be used across manufacturing 
enterprises [138]. The purpose of an MES is to assist human decision 
making for the management of manufacturing operations, and as such, 
the presented information and user, options should be intuitive and 

Table 12 
Industrial MES solutions in the market.  

MES Solution Key Features MES Functions Intelligence 
Level 

Additional Information 

POMSnet Aquila 
[120] 

order management, equipment management, materials 
management, weigh & dispense, specification 
management, quality management, personnel 
management, recipe execution, electronic batch records, 
review-by-exception & release-by-exception, worksheets 
and logbooks, device history 

1, 2, 3, 4, 5, 7, 
8, 10, 11 

Visibility ISA-95 based, web-based application, HTML5 UI/UX, 
Microsoft’s.NET technology, mobile/touch enabled, onsite 
or cloud hosted, standardized integration, OPC connectivity, 
interfaces based on S88 batch standard, data protection, 
FDA21 CFR compliance, enhanced security with Nymi Band 
authentication 

ABB MES[121] production management, quality management, downtime 
management, materials management, warehouse 
management, labor management, equipment & 
maintenance management, overall equipment efficiency 
reporting, electronic work instructions, operations and 
plant performance reporting 

1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11 

Visibility ISA-95 based, web-based application, B2MML support, 
Microsoft’s.NET technology, Microsoft SQL Server, virtual 
environment support, NLS support, standardized 
integration, OPC and TCP/IP, process intelligence, 
production intelligence, production optimization 

Siemens 
Opcenter[122] 

data collection & acquisition, dispatching production, 
document control, labor management, maintenance 
management, materials management, operations & 
detailed scheduling, performance analysis, process 
management, production tracking, quality management, 
resource allocation 

1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11 

Transparency ISA-95 based, comprehensive integration capabilities, cloud 
ready, touch friendly mobile interface, connected and 
aggregated data provides actionable insights 

GE Digital 
Proficy[123] 

resource, energy & efficiency management, quality 
management, production management & tracking, batch 
analysis, production process traceability, dynamic 
scheduling, supply chain coordination, data management 
and collection 

1, 2, 3, 4, 5, 7, 
8, 9, 10, 11 

Transparency web-based application, roll-specific dashboards, industry 
standards, OPC UA, MQTT, ISA 18.2, ISA 101, hybrid cloud 
and onsite data management, standardized integration, 
machine learning, predictive analytics 

3DS 
DELMIAworks 
[124] 

process monitoring, production monitoring, data 
collection, efficiency monitoring, inventory tracking, 
production traceability, material resource planning, 
production reporting, quality management, scheduling, 
warehouse management, product lifecycle management, 
tooling & project management, customer & supplier 
portals, document control, supply chain management 

1, 2, 4, 5, 7, 8, 
10, 11 

Transparency standalone ERP integration or built-in ERP, mobile app 
store, EDI/XML eCommerce, MS office interfaces, 
preventative maintenance, forecasting, manufacturing 
intelligence, business intelligence 

PLEX[125] production management, inventory management, quality 
management, production scheduling, production 
traceability, data analysis, task automation 

1, 2, 3, 5, 7, 8, 
10, 11 

Visibility cloud based, unified user interface, standalone ERP 
integration,  
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functional. AI can also be incorporated in the MES interface to create a 
more user-friendly experience. For instance, Mantravadi et al. propose 
the use of AI chatbots in MESs as a technical assistance system for users 
[139]. Their findings show that MES users can benefit from an interac
tive chatbot by creating a more dynamic experience with enhanced 
responsiveness and better data retrieval. This is just one way that AI can 
help improve efficiency in MES interfaces. 

8.2. IMES software systems and ML modules 

One of the crucial elements of the new MES generation is its con
trolling ability over the shop floor operations. The controlling section 
consists of inventory systems, condition monitoring, quality control, 
system scheduling, material flow and safety systems. All of these sub
systems are connected with databases, blockchain systems and the OPC- 
UA server. In every state of the software part, AI should be present for 
automation and increasing the efficiency of the production line [140]. 

In the proposed IMES framework, manufacturers should store system 
logs and product logs consisting of their status and features in a proper 
database system [141]. We recommend keeping a redundant version of 
the data in a blockchain system as well [142,143]. Mentioned redun
dancy is beneficial in different ways. Blockchain systems have high 
availability and are easy to access across edge devices. In some cases, 
these blockchain features enable us to remove SPoF (single point of 
failure) related to data. Because of systems’ pseudonymity and security, 
we can rely on storing data in the same way that database management 
systems (DBMSs) do [45,143]. 

We suggest selecting DBMSs and designing a blockchain system 
regarding the production line use cases and needs of each inventory 
system [144]. Some scenarios illustrate the importance of selecting a 
proper DBMS; As an example, some MESs use the power of deep learning 
to categorize goods within the production line stages into different 
classes, e.g., their ability to recycle. When an MES needs to store the 
aforementioned product features, such as recyclable or hazardous, into 
specific classes, a relational database or a column family database, such 
as Cassandra, is preferable. In contrast, if the MES uses an unsupervised 
method, relational databases are not a good fit because of the unpre
dictable output classes of these algorithms. Using document-based da
tabases such as MongoDB may be a better choice because it has a 
null-free structure in the design [145,146]. 

The proposed IMES design should have a fully automated document 
control toolbox. This toolbox should facilitate the review, modification, 
issuance and accessibility of documents. For this to happen, the MES 
model should have some 5NLP modules after recognizing the document 
images; secondly, a cloud-based decentralized software should be 
developed to make the documents more accessible[147]. To this end, 
designing a private blockchain system with distributed computation 
ability or employing well-known blockchain systems ([148–150]) with 
the ability to run scripts can be helpful. Thus, these systems should have 
computer vision models that are trained and ready for recognizing the 
documents. The automated document control part should understand 
the meaning of the recognized documents in the next stage and give a 
reasonable and logical response to them [151,152]. 

Another essential software part of the proposed new generation of 
MES is the supply chain. Companies need a trackable, transparent, 
secure and reliable supply chain for both their customers’ reliability and 
their own profits. To achieve this goal, records of the production stages 
should save in a consortium or hybrid blockchain [144,153]. Due to the 
blockchain’s transparency, decentralization, and pseudonymity [154], 
this technology is a good fit for the new MES generation and some 
companies already apply this solution to their supply chain [45,155]. 

Quality control is another aspect that next-generation MESs should 
deploy with added intelligence. This part is more connected to the OPC- 
UA server and database logging because it requires more data from 
cameras, sensors, and auto-ID technologies. In addition to having com
puter vision parts for fault recognition and recognizing anomalies 
[156–158] in the production line, other technologies should be acquired 
to avoid faults. For instance, the new generation of MESs should contain 
a digital twin in their production line and should develop simulation 
software before launching new features in the production line. VR and 
AR are also beneficial for eliminating human error and teaching new 
workers how to perform routine tasks [159]. 

Safety systems are another essential toolbox that should be 
considered in the IMES. For ensuring safety, many sensors are used in 
the MESs, namely temperature, humidity, fire detector [160,161]. In 
addition to the sensors, live video analysis and computer vision modules 
should be developed to detect the hazardous conditions for the 

Fig. 8. The components of the proposed conceptual IMES model.  
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employees in the production line [162]. Moreover, due to the recent 
COVID-19 pandemic, there is a high demand for automatic control of 
emergency response protocols in the production line [163]. 

8.3. IMES connection to the physical assets 

Field devices - Depending on the industry and the manufacturing 
field, there can be a range of machines, devices and hardware available 
for shop floor operations. Conveyors, sorters, actuators, robots, CNCs, 
motors, and rotating machinery are some examples of such devices. The 
IMES framework has to communicate with and control these field de
vices. Therefore, an IMES has to consider the IoT connectivity and the 
employment of controllers, which are two of the most important com
ponents based on Reference Architecture Model for Industry 4.0 
(RAMI4.0) [164]. 

Data collectors - Since data collection is one of the key functions for 
MESs; the new MES generation needs to automatically and effectively 
collect the data from the shop floor (e.g., equipment, workers, material 
and products) using sensors, RFIDs, different camera types and wearable 
devices. RFID middleware is an essential part of the IMES, however, 
there should be some security measures to avoid any data loss [165]. To 
cope with the speed, variability, and size of the data being gathered from 
the physical assets, the proposed IMES should use a cloud-based data 
architecture solution such as cloud-enabled distributed architecture 
[166], blockchain-based distributed network [167] or others [168,169]. 

9. Concluding remarks 

MES is one of the key layers of the automation pyramid. It connects 
the high-level management layer (ERP) to the control layer and shop 
floor operations. Nevertheless, there is a lack of adequate attention to 
the MES models’ compatibility with Industry 4.0 standardization [39]. 
This work presents how recent technologies and trends in Industry 4.0 
solutions can have an impact on the development of MES frameworks 
and also identifies the gaps and pitfalls that can obstruct the adoption of 
a practical MES. 

This paper carries out a systematic literature review to extract the 
trending technologies that resulted in the selection of over 1300 papers. 
After initial statistical and graph analyses, among them, we selected 65 
papers, including 14 survey papers, for further examinations. After 
reviewing these papers, we extracted insights about the research gaps 
and the limitations related to the trending technologies and MES models. 

Further, the selected papers are classified into five intelligence levels, 
in accordance with the Industry 4.0 maturity and readiness, to see 
whether current models can meet Industry 4.0 requirements. We high
light that despite the plethora of automation and optimization solutions 
for Industry 4.0, there is still a considerable gap between the current 
solutions and an intelligent MES (IMES) that is basically a fully auton
omous and intelligent system. Further, we have presented the main MES 
functionalities and mapped the literature accordingly to identify the 
functions that have not been addressed adequately. Our findings suggest 
that: i) none of the proposed MES models have addressed these MES 
functions altogether; ii) we did not identify any MES-related papers that 
take “document control" into account; iii) most MES related papers 
published over the last decade focus primarily on the first two steps of 
industry 4.0, i.e., the Digitalization and the Visibility levels, and iv) our 
analysis shows that there are still significant steps remaining to reach 
higher intelligence levels in dispatching product unit control, mainte
nance management, product tracking and labor management. 

We emphasize that in the future, an IMES should focus more on 
flexibility, predictability, adaptability, and thoroughness that comprise 
all the MES functionalities; Such a model can help the practitioners to 
replace their traditional procedures and let machines and robots 
perform a majority of tasks in different manufacturing systems. We 
expect that some trending technologies contribute further to the reali
zation of an efficient IMES. Examples include digital twins (DTs) with 

higher complexities and deeper perceptions, AR and VR solutions for 
human-machine interactions, more powerful generative algorithms to 
synthesize realistic datasets and solutions, and the blockchain technol
ogy to make the supply chain system more transparent and track the 
units more efficiently. 

In the systematic review part of this paper, we highlight the most 
trending technologies used to make manufacturing more intelligent 
during the last decade. According to Table 9, it can be concluded that 
from 2009 to 2012, machine learning, computer vision and VR were the 
top two technologies employed for re-innovating manufacturing. Com
puter vision techniques are used for adding more automation to pro
duction lines as well as fault detection purposes. Also, researchers 
designed some quality assurance modules in manufacturing using VR 
technology during that period. After that, pattern recognition and 
reinforcement learning technologies became popular and frequently 
used. In 2015, AR was also widely used and created a new idea into 
IMES, especially for employee on-boarding and quality assurance. 

The DT and use of deep learning algorithms are also revolutionizing 
the manufacturing sector and are increasingly applied in new frame
works. New trending technologies such as 5G and blockchain can be of 
great importance in edge communications. Blockchain is beneficial and 
a good solution for many production lines and companies regarding the 
supply chain due to the privacy, transparency and decentralization that 
blockchain can provide. According to the hot topic trends and traces, we 
think a hot area in 2021 and 2022 will be 5G, blockchain and Generative 
Adversarial Networks -GANs-. GANs are also a new approach and 
method that can be used in manufacturing to helpfully achieve the goal 
of IMES. 

There are some obstacles that wedge a gap between industrial 
implementations and state-of-the-art reported in literature. We outlined 
the gaps in the well-known industrial MES frameworks and highlighted 
the roots of the problem with industry not being able to adopt fully smart 
manufacturing technologies and strategies. The first barrier is the lack of 
sufficient investment in renewing the hardware and provision of novel 
technology platforms. In addition, the lack of technical skill sets 
required and the absence of cultural convergence have resulted in poor 
collaboration between experts that could address the identified knowl
edge gaps in a timely fashion. SMEs, comprising the majority of the 
industry, struggle the most to adopt intelligent solutions. Nevertheless, 
due to the adoption of middle-wares [170], and cloud-based solutions 
[171,172] that have made this transition more affordable and highly 
scalable, more and more SMEs will adopt smart MESs [165,173]. 

In conclusion, the authors suggest closer collaboration between in
dustry R&D divisions and academic research laboratories to alleviate 
and remove the impediments we presented in this paper. Hence, a 
comprehensive MES model that integrates all the MES functionalities 
with more intelligence levels is required. To this end, we proposed a 
conceptual framework, called IMES, that shows briefly what an industry 
4.0-ready MES should contain. This framework aims at improving each 
MES task to its highest level of intelligence and ensuring that the MES 
model can be practically implemented by practitioners. 
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[53] Ćwikła G. Real-time monitoring station for production systems. Adv Mater Res 
2014;837:334–9. 
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