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1.0 SUMMARY.

“Optimization is a process of finding the conditions that give the maximum or minimum

value of a function. (Sohouli, n.d., slide 9) The purpose of this project is to help students gain a

better understanding of the concepts of optimum design, develop optimization algorithms codes

using the MATLAB programming language and apply optimization techniques that were taught in

the MECH 580 Engineering Optimization course to solving real-world optimization problems. This

project was organized as a requirement towards the completion of the MECH 580 Engineering

Optimization course work.

The project scope covers software programming with the MATLAB-programming language

of a Gradient-based constrained optimization algorithm, a Global optimization Algorithm and

hyperparameter selection and tuning to get optimum design values for the given problems. Out of

the scope of this project is the five-step optimization problem formulation procedure. The objective

function, constraint function and design variables were given.

This report describes the project in great detail, it outlines the project aims and objectives,

project execution procedures and results discussions. It is divided into 6 main sections: The

Summary, Introduction, Project Objectives, Procedures for the two sections of the project,

Conclusion and References. The aim of this project is to develop robust and efficient high

performance, multi-parameter optimization algorithms to solve the design of a pressure vessel

problem using a gradient-based optimization algorithm and the design of a welded beam using the

particle swarm optimization algorithm with the objective of reducing production costs. To use the

developed programs, the F_main file for each algorithm is the main file that needs to be executed or

run; it calls all underlying subroutines needed to execute the algorithms.
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In this project, the gradient-based optimization algorithm selected and used was the Augmented

Lagrangian Multiplier (ALM) algorithm. For clarity of this report, sections 3 and 4 focus on each

developed program, the Augmented Lagrangian Multiplier (ALM) and Particle Swarm Optimization

(PSO) respectively. In these sections, the justification for the chosen algorithms, the development,

the validation and the testing procedures were explained in detail, how to use the programs and when

to take caution were also discussed, the results and graphical representations for each design

problem were highlighted and discussed as well. In the body of the report, the references to the

codes/subroutines/programs/stored values are highlighted in blue for easy identification, these

references point to the folders and MATLAB M-files where the codes are written. There are also

references to MATLAB MAT-files, excel and pdf files that were used to store relevant variables in

the programs.
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2.0 INTRODUCTION.

2.1 Project Description.

The Engineering Optimization course project is in two (2) parts. It involves the application of

one of the Gradient-based optimization algorithms discussed in class and a global optimization

algorithm; the Particle Swarm Optimization Algorithm (PSO), to optimize the design of a cylindrical

pressure vessel and a welded beam respectively. This project was carried out using the MATLAB

programming language to programme the above mentioned algorithms with the objective of

minimizing the total production cost of the design items.

The Engineering Optimization design process begins with the problem formulation. The optimum

design problem formulation can be defined as the translation of a descriptive statement of the design

problem to a mathematical statement that can be optimized (Arora, 2004). It should be noted that in

this project, the proper definition and formulation of the design problem was already conducted and

the requirement for project completion is to write the codes for the chosen optimization algorithms

in MATLAB and use them to find the optimum design variables for the given problems. The outputs

of the problem formulation stage includes:

1. The design variables.

2. The Objective Function.

3. The constraint functions.

The Design Variables: These are the entities that describe a system. These variables are referred to

as optimization variables and regarded as free because any value can be assigned to them; they are

also required to be independent of one another.

The Objective Function: This is a function of the design variables which needs to be maximized or

minimized depending on the problem requirements. For this project, the cost function(s), functions

to be minimized were given.
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The Constraint Function(s): In engineering applications or most real systems, the systems have to

be designed within given resource limits and performance requirements; these factors impose

constraints on the design variables and are translated to mathematical constraint functions that have

to be satisfied for a design to be accepted. These constraints also depend on the design variables and

they are simply the restrictions placed on the system design.

In this report, the design variables, objective function and constraint functions for each of the

optimization problems are presented and discussed in sections 3 and 4 respectively, they are divided

into numbered and headed sections and the different main ideas are presented in a logical order.

2.2 Project Objectives.

The purpose of this project is to consolidate the concept of engineering design and optimization

techniques discussed in the MECH 580 course through a practical approach. It focuses on providing

a platform for the implementation of the engineering design trial and error procedure to estimate a

system design and analyze it to see if it performs according to given specifications and the use of

MATLAB programming language to apply optimization algorithms to select optimum design

variables.The goal is to code a gradient-based and a global optimization algorithm for constrained

optimization problems.

The objectives of the project are:

1. Complete a high-performance optimum design of a pressure vessel and documentation.

2. Complete a high-performance optimum design of a welded beam and documentation.

3. Demonstrate the quality of the results of the project quantitatively and graphically.

Some other requirements or project specifications include:

1. Transcribing the design problem into the standard form.

2. Trying different initial designs and discussing their results.

3. Verify the solution(s) graphically and trace the history of the iterative process graphically.
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3.0 DESIGN OF PRESSURE VESSEL.

3.1 The Pressure Vessel Design Problem Formulation.

3.1.1 The Design Variables.

There are four(4) design variables:

1. The thickness of the shell (Ts).

2. The thickness of the head (Th).

3. The inner radius (R).

4. The length of the cylindrical section of the vessel, not including the head (L).

3.1.2 The Objective Function.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑅, 𝐿,Ts, Th) = 0.6224Ts𝑅𝐿 + 1.7781Th𝑅2 + 3.1661(Ts)2𝐿 + 19.84(Ts)2𝑅

3.1.3 The Constraint Functions.

Subject to: 0.0193𝑅 ≤ Ts

0.00954𝑅 ≤ Th

𝜋𝑅2𝐿 + 4/3𝜋𝑅3 ≥ 1296000

𝐿 ≤ 240

0.1 ≤ Ts ≤ 99

0.1 ≤ Th ≤ 99

10 ≤ 𝑅 ≤ 200

10 ≤ 𝐿 ≤ 200
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3.2 Problem in Standard form.

In a typical optimization problem, the standard form is defined as minimization of a function with

“≤” type constraints.

3.2.1 The Standard Objective Function.

For the pressure vessel design problem, the given function is the same as the standard form function.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(x1, x2,x3,x4) = 0.6224x3x1x2 + 1.7781X4x1
2 + 3.1661(x3)2x2+ 19.84(x3)2x1

3.2.3 The Standard Constraint Functions.

The standard constraint functions, however, need to be written as “≤” type constraints.

Subject to: 0.0193x1 - x3 ≤ 0

0.00954x1 - x4 ≤ 0

1296000 - 𝜋x1
2x2 - 4/3𝜋x1

3 ≤ 0

x2 - 240 ≤ 0

x3 - 99 ≤ 0

0.1 - x3 ≤ 0

x4 - 99 ≤ 0

0.1 - x4 ≤ 0

x1 - 200 ≤ 0

10 - x1 ≤ 0

x2 - 200 ≤ 0

10 - x2 ≤ 0
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3.3 Procedure and Code References.
The procedure for solving the pressure vessel design problem in terms of programming the

MATLAB codes involves the development, testing and graphical analysis of the subroutine

algorithms that make up the Gradient-based algorithm. For this project, the gradient-based

constrained optimization algorithm I used was the Augmented Lagrangian Multiplier algorithm

(ALM).

3.3.1 The Augmented Lagrangian Multiplier Algorithm And Reason For Selection.

The Augmented Lagrangian Multiplier Algorithm is a gradient-based solution for constrained

optimization problems using unconstrained optimization methods and these methods are referred to

as indirect methods. Generally, there are two (2) main methods of solving constrained optimization

problems: The direct and Indirect Methods.

In Indirect Methods, The basic idea is to construct a composite function using the cost and constraint

functions, it also contains certain parameters referred to as the penalty parameters that are

responsible for penalizing the composite function for violation of constraints. They are termed

“Transformed methods” because these methods solve the constrained optimization problem by

transforming them into one/more unconstrained problems. They are generally characterized under

SUMT (Sequential Unconstrained Minimization Techniques) and broadly classified into; penalty and

barrier functions.

The Sequential Unconstrained Minimization Techniques have certain weaknesses; the penalty and

barrier functions tend to be ill-behaved near the boundary of the feasible set where the optimum lies

when the penalty parameters go to infinity. ( Arora, 2004) To cater for this weakness, the Augmented

Lagrangian Multiplier Method was introduced, the basic idea of penalty/barrier methods is that for

convergence to be guaranteed, the penalty parameters goes to infinity which in turn causes many

irregularities so, instead of trying to make the penalty parameters go to infinity, the Augmented

Lagrangian Multiplier Method constructs the composite function in such a way that the penalty

parameters are kept finite while minimizing the transformation function and that is why I have

selected this optimization method the solve this problem.

Also, the Augmented Lagrangian Multiplier Method (ALM) is a robust method because it has been
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proven to converge starting from any arbitrary point. The transformed or composite unconstrained

function is solved using a Quasi-Newton Method, Davidon-Fletcher-Powell (DFP) method. This

method was chosen because it is one of the most powerful methods for minimization of a function

due to its fast rate of convergence compared to the ordinary steepest-descent method, its robustness

and computational efficiency. The steepest-descent method has a poor rate of convergence because

only first-order information is used, The Newton methods were introduced to correct these flaws;

they use second-order derivatives of the function and they were able to achieve good convergence

properties but they are computationally inefficient because they require calculation of n(n+1)/2

second-order derivatives to generate the Hessian matrix (where n is the number of design variables).

Newton's method also runs into difficulties if the Hessian of the function is singular at any iteration

that is it is not continuous so the quasi-newton methods were developed to overcome these

drawbacks of Newton’s method by generating an approximation for the Hessian matrix or its inverse

at each iteration and only the first derivatives of the function are used to generate these

approximations which makes them robust, they possess the desirable features of both the

steepest-descent and the Newton’s methods (Sohouli, n.d., slide 8)

Basically, in optimum design applications because it is a trial and error process and sometimes might

contain many hyperparameters to be tuned, designers focus their efforts on algorithms that are

robust, guaranteed to converge, applicable and reliable because in practical applications; the failure

of the algorithms can cause disastrous effect, it can make the codes very hard to debug, difficult to

implement and in return kill the morale of the designers. Sometimes in the case of this project/course

it might even require individuals to be well grounded in optimization techniques before they can

apply them to solve problems which cannot be learnt in three (3) months of taking a course. It also

makes numerical implementation of algorithms in general purpose design optimization softwares

such as MATLAB less reliable so a robust and generally functional algorithm such as DFP is better

suited and that is why I have chosen it as the minimization algorithm. The ALM algorithm is

composed of 3 subroutine programs and one main program to call the other subroutine functions.
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3.3.2 The Subroutines, Testing and Validation.

3.3.2.1 The Golden Search Algorithm and Reason for Selection.

Numerical methods for solving unconstrained problems have gained considerable importance over

time and substantial effort has been expended in developing efficient algorithms for these problems.

These methods were all developed on the general idea of initiating an estimate for the optimum

solution and this estimate is improved through an iterative process till the optimal conditions are

satisfied or stopping criteria is reached. It involves updating the design in the direction of descent.

The change in design is composed of two (2) subproblems: Direction of descent finding and

Step-size determination subproblems. The Golden search method is a one-directional search

algorithm, it is a method that searches for the minimum of a given function within a chosen interval,

it basically determines the interval in which the minimum of a function lies and it is used to solve the

step-size determination subproblem in the DFP subroutine. The Golden Search method is an

improvement over the alternate equal interval line search and one of the better methods in the class

of interval reducing methods and that is why I chose it for this project. It is more computationally

efficient. The number of function evaluations is a measure of efficiency of an algorithm and

compared to other line 1-D/Line search algorithms like the alternate equal interval line search, the

golden search is more computationally efficient because for the same problem/function, lesser

function evaluations are needed to obtain the same solution compared to other line search methods

which makes the golden search a better method.

The golden search program was developed using the MATLAB programming language.

See MECH 580 project folder - GoldenSearch_1D Algorithms folder - GoldSection_1Var for golden

search subroutine code.

3.3.2.2 The Golden Search Algorithm Testing.

In software development projects, it is important to test each subroutine or developed unit of a

program before using it in another function. It makes the program easy to debug and integrate with

other programs. To test the developed golden search Algorithm code, I used the already solved

example 8.3 in The Optimum Design Textbook (Arora, 2004). This problem has already been solved

in the textbook so it can be considered a reliable source for cross-validation of the result of my
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algorithm.

See MECH 580 project folder - GoldenSearch_1D Algorithms folder - Test_Example for function

code.

See MECH 580 project folder - GoldenSearch_1D Algorithms folder - GoldenSection_Test_Example

for code to call the golden section algorithm function.

3.3.2.3 The Golden Search Algorithm Validation and Results.

Here is the result: 1.3859073551243202, 0.45482285502908049.

See MECH 580 project folder - GoldenSearch_1D Algorithms folder -

GoldenSection_Test_Example_Result for results.

The above results are approximately the same as the result in example 8.3 in The Optimum Design

Textbook which are:1.386511, 0.454823 where the values represent where the minimum of the

function is obtained and the values of the function at the given point respectively. Below is a

graphical representation of the function showing the minimum point that was found which is exactly

the same as the values in the textbook.
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Figure 1

Golden Search algorithm: Test example function plot.

3.3.3.1 The DFP Algorithm.

As earlier mentioned, DFP is a quasi-newton method, it is a search technique or direct method of

optimization which uses an iterative process representing an organized search through the design

space to find points that represent the local minimum of the cost function.

The DFP algorithm was developed using the MATLAB programming language.

See MECH 580 project folder - DFP_Algorithms folder - DFP for subroutine.

3.3.3.2 The DFP Algorithm Testing.

To test the developed DFP Algorithm code, I used the already solved Assignment 2: question 1 for

this course. This problem has already been solved so it can be considered a reliable source for

cross-validation of the result of my algorithm.

See MECH 580 project folder - DFP_Algorithms folder - Test_ExampleDFP for function code.

See MECH 580 project folder - DFP_Algorithms folder - DFP_Test_Example for code to call the

DFP algorithm function.

3.3.3.3 The DFP Algorithm Validation and Results.

Here is the result: -0.428838902926593, 0.142589037909284, 1.71428585787757

See MECH 580 project folder - DFP_Algorithms folder - DFP_Test_Example_Result for results.

The above results are approximately the same as the result of the already solved Assignment 2:

question 1 for this course which are: -0.4286, 0.1429, 1.7143 where the values represent design

variable points (x1 & x2) where the minimum of the function is obtained and the value of the

function at the given point respectively. Below is a graphical representation of the function showing

the iterative progress of the DFP function from the initial point (1,1) to the minimum point that was

found.
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Figure 2

DFP algorithm: Test Example function contour plot and change in design plot.

3.3.4.1 The ALM Algorithm.

The ALM algorithm was developed using the MATLAB programming language.

See MECH 580 project folder - ALM_Algorithms folder - ALM for subroutines.

3.3.4.2 The ALM Algorithm Testing.

To test the developed ALM Algorithm code, I used the already solved example 7.1 in the Numerical

Techniques for Applied Optimization with MATLAB programming textbook (Venkataraman, 2008).

This problem has already been solved so it can be considered a reliable source for cross-validation of

the result of my algorithm.

See MECH 580 project folder - ALM_Algorithms folder - Ofun_Test_Example, Hfun_Test_Example

and Gfun_Test_Example for function code and equality and inequality constraints codes

respectively.
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See MECH 580 project folder - ALM_Algorithms folder - ALM_Test_Example for code to call the

ALM algorithm function.

3.3.4.3 The ALM Algorithm Validation and Results.

Here is the result: 0.99940470233208223 1.0002023256159265.

See MECH 580 project folder - ALM_Algorithms folder - ALM_Test_Example_XResult for results.

The above results are approximately the same as the result of the example 7.1 in the Numerical

Techniques for Applied Optimization with MATLAB programming textbook where the values

represent design variable points (x1 & x2) where the minimum of the function is obtained. Below is

a graphical representation of the function showing a combination of the cost function contour plots,

the constraint functions and feasible regions, the DFP iterative steps towards the minimum starting

from point (3,2). For more results of the constraint values after ALM algorithm optimization, See

MECH 580 project folder - ALM_Algorithms folder - ALM_Test_Example_RgResult for results and

ALM_Test_Example_RhResults.
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Figure 3

ALM algorithm: Test Example objective function contour plot, constraint function plots and
change in design direction.
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3.4 The Main Algorithm.
The main ALM algorithm used to solve the pressure vessel design problem is a combination of all

the above-mentioned subroutines and additional programs to initialize design variables from varying

randomly chosen starting points. The main Algorithm is in the MECH580_project -

Engr_Optimization_Project_1 folder.

These files have in them comments on the definition of the functions, what the functions do, their

input arguments, required subroutines and outputs. Each file has a thorough guide to gain an

understanding on how to use it and when to take caution.

3.4.1 Implementation Notes.

1. Using Different Initial Designs: One of the major drawbacks of search methods is the

problem of getting stuck in a local minimum. It is possible for the algorithms to get stuck in a

local minimum while searching through the variable space which makes it impossible to get

to the point where the function has the least value. To cater for this, it is good practice to start

the algorithm at different initial designs with the hope that one or more good starting points

will help to get to the global minimum or as close to it as possible.

Also, from observation, the ALM algorithm converged at some local minima where all the

constraints were not satisfied but the change in design was constant so no more

improvements were made on the design points; to deal with these issues, it is recommended

to start at random initial values; this was adopted in this project.

2. Random Initial Values: In order to accurately capture the entire feasible design space and

move randomly in it, the initial values were chosen at random using the MATLAB rand

function while ensuring that the values are within the explicit constraint limits for each

design variable.

% init_x1 = Xlow(:,1) + (Xhigh(:,1)-Xlow(:,1)).*rand(1);

% init_x2 = Xlow(:,2) + (Xhigh(:,2)-Xlow(:,2)).*rand(1);

% init_x3 = Xlow(:,3) + (Xhigh(:,3)-Xlow(:,3)).*rand(1);

% init_x4 = Xlow(:,4) + (Xhigh(:,4)-Xlow(:,4)).*rand(1);

% initialdesign = [init_x1, init_x2, init_x3, init_x4];
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See the MECH580_project - Engr_Optimization_Project_1 folder - ALM_Main file for

implementation of this. Kindly note that the ALM_Main file is also a function that calls the

ALM primary algorithm; the ALM_Main file is called by the F_Main file.

3. How to Use (The F_Main file): To use the developed program, the F_main file is the main

file to run/execute. It calls the ALM_Main function 200 times while the ALM_Main file

passes different random initial values to the ALM primary algorithm. This makes it possible

to have 200 random initial starting designs that move through the variable space to find a

good minimum. So to run the program, just run the F_Main file.

a. Note: For this project, the F_Main file has been used to get 200 random initial

starting designs, the results have been analyzed and the initial design points that result

in the lowest function value and that satisfies all constraints have been chosen and

used to replace the random value generators. Here is the chosen initial design:

initialdesign = [186.3794818, 120.2171695, 1.779612602, 12.05301158]

b. The random value generators were not deleted, just commented out, to use them for

verification purposes, uncomment them and comment out the already chosen starting

point for this project.

c. Result comparison: If the random value generators are activated, the collated results

will not be the same as mine and cannot be directly compared because the values are

generated randomly so it wouldn’t be the same initial design values as mine.

d. Storage: For better analysis, the F_main file is also equipped with functions to store

the resulting, initial designs for each of the 200 iterations, stores the updated xvalues,

the constraint values using the updated xvalues, the composite function values using

the updated xvalues and the Rg parameter values.

3.4.2 Results and Discussions.

From the F_Main files, necessary parameters and values for every iteration using different initial

values were collected and stored in MATLAB mat files. These results can be found in the

MECH580_project - Engr_Optimization_Project_1 folder - Results folder. The results folder

contains the final results from using random generators to find the best initial starting design. Below
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is the definition of all the results present in the Final_Results1 MAT files.

Final-xstore: This file contains the learnt parameter values from various randomly chosen initial

designs.

Final_initialdesign: Contains the randomly chosen initial values.

Final_rgstore: Contains the final rg parameters updated at every ALM iteration.

Final_gAstore: Contains the constraint values using learned parameters.

Final_fVstore: It contains the values of the composite function after every iteration of randomly

chosen initial values.

1. Result Tables: For better visualization of the stored values, an excel sheet was drawn to

collate all these results. See MECH580_project - Engr_Optimization_Project_1 folder -

Results folder - Analysis_table excel file to see the table of results showing the 200 random

initial parameter values, optimized parameter values after ALM, final constraint values at

ALM convergence and function values at ALM convergence.

2. Reduced Result Table: The large result table was sorted for optimized parameter values that

resulted in the values of all constraints being satisfied. The reduced result table contains

stored initial design values, function values, optimized parameter values and constraint

values of the few select values. See MECH580_project - Engr_Optimization_Project_1

folder - Results folder - Data_SatisfiedConstraints pdf file for table.

Also see table(s) below. The row highlighted in dark teal color is the corresponding initial

design values, optimized parameter values, constraint values and function values of the

selected initial design for this project.

3. Final Results.

a. Initial Design [X1, X2, X3, X4] = [186.3794818, 120.2171695, 1.779612602,

12.05301158]

b. Optimized Parameter Values = [49.7935860289998, 99.9913823007038,

0.961732643764591, 15.3367501818286]

c. Constraint Values After Optimization = [-0.000716433404894024,

-14.8617193711120, -0.560178874060512, -140.008617699296,

-98.0382673562354, -0.861732643764591 -83.6632498181714,
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-15.2367501818286, -150.20641397100, -39.7935860289998

-100.008617699296, -89.9913823007038]

d. Function Value = [71800.8127810083]

Table 1

ALM Algorithm: Result objective function value, constraint function values and initial and
optimized parameter values table
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4.0 DESIGN OF WELDED BEAM.

4.1 The Welded Beam Design Problem Formulation.

4.1.1 The Design Variables.

There are four(4) design variables:

1. The Height of weld (h).

2. The Length of weld (L).

3. The Height of the beam (t).

4. The Width of the beam (b).

4.1.2 The Objective Function.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(h,L,t,b) = 1.10471ℎ2𝐿 + 0.04811t𝑏 (14.0 + 𝐿)

4.1.3 The Constraint Functions.

Subject to: 𝜏 ≤ 𝜏max

𝜎 ≤ 𝜎max

ℎ ≤ 𝑏

0.10471ℎ2 + 0.04811 𝑡 𝑏 (14.0 + 𝐿) ≤ 5

0.125 ≤ ℎ

𝛿 ≤ 𝛿max

𝑃 ≤ 𝑃c
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4.2 Problem in Standard form.

In a typical optimization problem, the standard form is defined as minimization of a function with

“≤” type constraints.

4.2.1 The Standard Objective Function.

For the beam design problem, the given function is the same as the standard form function.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(h,L,t,b) = 1.10471x1
2x2 + 0.04811x3x4 (14.0 + x2)

4.2.3 The Standard Constraint Functions.

The standard constraint functions, however, need to be written as “≤” type constraints.

Subject to: 𝜏 - 𝜏max ≤ 0

𝜎 - 𝜎max ≤ 0

x1 - x4 ≤ 0

0.10471x1
2 + 0.04811 x3 x4 (14.0 + x2) - 5 ≤ 0

0.125 - x1 ≤ 0

𝛿 - 𝛿max ≤ 0

𝑃 - 𝑃c ≤ 0

4.3 Particle Swarm Optimization: Algorithm.
Particle swarm optimization (PSO) is inspired by social and cooperative behavior displayed by

various species to fulfill their needs in the search space. The algorithm is guided by personal

experience (Pbest), overall experience (Gbest) and the present movement of the particles to decide

their next positions in the search space. For constrained optimization problems, just like indirect

search methods, an equivalent unconstrained function is constructed using a penalty function for the
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constraints and the PSO algorithm is applied. In literature, the stationary penalty parameters have

proved to work better than the non-stationary penalty, so it was applied in this project. Also, the most

commonly used hyperparameters for the PSO (not mathematically proven but a rule-of-thumb),

these hyperparameters have worked well with the PSO algorithm and they were adopted in this

project.

For improvement of the particle swarm optimization algorithm, an inertia weight and constriction

factor was added to reduce the velocity value because the particles' velocities tend to build up so fast

which might lead to skipping the optimum point. Finally, boundary conditions were introduced to the

problem, this is to confine the search space and prevent the particle from going to a position that will

result in invalid solution.

4.4 Procedure and Code References.
The procedure for solving the welded beam design problem is to develop the Particle Swarm

Optimization algorithm with the MATLAB programming software. To ensure that the developed

solution for this project is reliable; a code verification procedure was conducted which involved the

use of a constrained three variable optimization problem as a use case to validate the results from the

PSO algorithm. The results were compared with the results from a verified, general-purpose, built-in

MATLAB software algorithm (fmincon) function. After verification, the developed algorithm was

used to solve the beam design optimization problem, performance analysis of the algorithm based on

the changing hyperparameters was carried out and graphical analysis was used to draw convincing

inferences.

4.4.1 The PSO Code Verification.

4.4.1.1 The PSO Algorithm.

The PSO algorithm was developed using the MATLAB programming language. The same algorithm

used for the test was used for the main project solution.

See MECH 580 project folder - PSO_Algorithms folder - PSO for the PSO primary algorithm code.

Three MATLAB live script files are needed to fully execute the PSO programme. In the first file, the

transformed objective function is defined, the second file is the primary PSO algorithm that was
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developed and the third file contains codes that call the PSO algorithm. The third file does more than

just calling the PSO program and it is explained in detail in section 3.4.2.

4.4.1.2 The PSO Algorithm Testing.

To test the developed PSO Algorithm code, I used the example below. I solved the example with my

PSO algorithm and the MATLAB “fmincon”function which is a general purpose design

optimization algorithm so it is a reliable algorithm for cross-validation of my results.

Objective function = min [ 10 (1 - x(1))2 + 20 (2 - x(2))2 + 30 (3 - x(3))2]

Subject to: x(1) + x(2) + x(3) <= 5

x(1)2 + 2 x(2) <= x(3)

See MECH 580 project folder - PSO_Algorithms folder - Code Verification folder - fmincon_Ver

folder - Verification_Func & nlcon for the implementation of the fmincon algorithm.

4.4.1.3 The PSO Algorithm Validation and Results.

Using the PSO algorithm, here are the values of X: 0.418344296902070, 1.46158365760199,

3.09901684296184

Function Value = 9.4725

See MECH 580 project folder - PSO_Algorithms folder - Code Verification folder - PSO_Ver -

PSO_TestResult MAT file for Xvalues and function value.

The above results are approximately the same as the results from the fmincon MATLAB function

which are:

X: 0.438277951180446 1.45654478489865 3.10517713228823

Function Value = 9.3941.

See MECH 580 project folder - PSO_Algorithms folder - Code Verification folder - fmincon_Ver

folder - Xvalues to verify results.

Below is the plot showing the convergence of the PSO algorithm after 10 iterations to get the best

cost value of 9.4725.
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Figure 4

PSO Algorithm: Test example objective function values vs No of iterations plot

4.4.2 The PSO Main Algorithm.

The main PSO algorithm used to solve the welded beam design problem contains lines of codes that

execute two main functions.

1. It is used to call/execute the Particle Swarm Optimization (PSO) primary function.

2. It is used to analyze the effect of population size on the performance of the algorithm.

3. It is used to select and store relevant parameters and information of iteration with the best

cost.
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4.4.2.1 How to use.

As mentioned above, the PSO main algorithm is used to call the PSO primary function so to execute

the PSO function on a given problem, a MATLAB file containing the function is created, the main

PSO function references both the function and primary PSO file to solve the problem. So to use the

program, simply run the PSO main file.

See MECH 580 project folder - PSO_Algorithms folder - PSO_main for the PSO main mlx. file.

4.4.2.2 Analyzing the Effect of Population size.

To see the effect of different PSO population sizes on the behavior or performance of the algorithm

while keeping the other hyperparameters fixed after adequately tuning them to get good algorithmic

performance for the given optimization problem, the population sizes were varied using a for loop.

The effect of the population sizes ranging from a of size 50 to a size 450 with an increment of 50

sizes at every iteration was used for testing; in order to be able to make reasonable and fairly

accurate inferences from the statistical data, the average and medians of a large sample size was

taken for every population size by creating an inner for loop of 100 iterations. For instance, at

population size 50, the best costs (i.e. the lowest cost for a complete PSO optimization) over 100

iterations were collected and averaged and the medians were also collected.

The median is a preferred measure for central tendency for this kind of problem because it was

observed that maybe due to the effect of factors like randomized starting points of the algorithm, a

very few times , the PSO algorithm converges to very high cost values which is triggered by the

penalty imposed on the cost function when constraints are violated. These unusual, occasional higher

values are outliers and the mean of a distribution is greatly affected by outliers as seen in figure 5

below, so median is a better representation of central tendency for this analysis because it isn’t

greatly affected by outliers, figure 6 shows the graphical representation of how the performance of

the PSO algorithm improves as the population size increases. From the plot, we can confidently infer

that the performance of the PSO algorithm as a measure of the fitness function (because this is a

minimization problem, the lower the fitness function, the better the performance of the algorithm)

increases as the population size increases. The cost function value reduces as the population size

increases until it plateaus out where any increase in population size while keeping other
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hyperparameters constant wouldn’t cause any increase in the performance of the algorithm. From

figure 6, you can observe that it plateaus around population size 6 which is equivalent to population

size 6*50=300 (coding rep).

Figure 5

PSO Algorithm: Test example average objective function values vs Population size plot
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Figure 6

PSO Algorithm: Test example median objective function values vs Population size plot

4.4.2.3 Results and Discussions.

The third function of the PSO_main MATLAB file was to record the hyperparameters, population

size, swarm positions, cost function value, constraint values and constraint value index, which

ensures all constraints are satisfied while going through almost a thousand iterations to analyze the

effect of change in population size. It tracks the iterative process and stores the necessary

information about the lowest cost function value seen; which is referred to as the best cost so far in

the code. These results were stored in the LeastCost_info mat file.

See MECH 580 project folder - PSO_Algorithms folder - PSO_Results - LeastCost_Info MAT file for

stored values.

For a better understanding of the variables stored in the LeastCost_info mat file, below is a

definition of the variables.

1. Best_CostSoFar - As the name implies is the lowest value of the cost function for this
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minimization problem and the value was 1.7249.

2. BestSol - This is a struct file with 2 fields. The first field BestSol.position contains the

position or optimized values of parameters x resulting in the lowest cost value. The second

field contains the best cost value which has been captured above.

Parameter Values/Position = [0.205729639674165 3.47048866755492

9.03662391366253 0.205729639776849]

3. cO - This is a vector containing all constraint function values for the chosen best position.

These values show that all the constraints are satisfied.

Constraint Values = [-2.47179013967980e-06 -2.05973519769032e-05

-1.02684388769703e-10 -3.43298420794021 -0.0807296396741648

-0.235540322599970 -6.35089236311615e-07]

4. Params - This field is storage for relevant hyperparameter values. From the result, it can be

seen that the best cost value was found at a population size of 450.
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5.0 CONCLUSION

The purpose of this project was to help students gain practical skills in the field of

engineering optimization using defined algorithms. The goal of the project was to develop robust

optimization algorithms using the MATLAB programming language to solve real problems. The

Gradient-based and PSO algorithms were developed and successfully applied to solve the pressure

vessel and welded beam design problems.

The following conclusions can also be drawn from this project:

1. The performance of the Particle Swarm Optimization Algorithm is greatly influenced by the

chosen swarm population size, from the analysis of the effect of population size on PSO

performance, it is evident that while keeping other hyperparameters constant and increasing

the population size the performance of the algorithm gets better till it levels out and causes no

evident increase in the performance of the PSO algorithm. So it is recommended to increase

the population size till you find the one that works best for the problem at hand.

2. The convergence of the gradient-based algorithm (ALM) or in general search

methods/algorithms are greatly affected by the chosen starting point, depending on the

starting point, the algorithm might get stuck at a local minimum thereby causing it to

converge to suboptimal points. To combat this, it is recommended to start at several random

initial positions till we find points that give better cost function values.

3. Lastly, hyperparameter tuning is a key factor in solving engineering optimization problems; a

well tuned algorithm gives better performances and results.
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